No Arabic abstract
Thanks to the release of the extraordinary EHT image of shadow attributed to the M87* supermassive black hole (SMBH), we have a novel window to assess the validity of fundamental physics in the strong-field regime. Motivated by this, we consider Johannsen & Psaltis metric parameterized by mass, spin, and an additional dimensionless hair parameter $epsilon$. This parametric framework in the high rotation regimes provides a well-behaved bed to the strong-gravity test of the no-hair theorem (NHT) using the EHT data. Incorporating the $epsilon$ into the standard Kerr spacetime enrich it in the sense that, depending on setting the positive and negative values for that, we deal with alternative compact objects: deformed Kerr naked singularity and Kerr BH solutions, respectively. Shadows associated with these two possible solutions indicate that the deformation parameter $epsilon$ affects the geometry shape of standard shadow such that it becomes more oblate and prolate with $epsilon<0$ and $epsilon>0$, respectively. By scanning the window associated with three shadow observables oblateness, deviation from circularity, and shadow diameter, we perform a numerical analysis within the range $a_*=0.9mp0.1$ of the dimensionless rotation parameter, to find the constraints on the hair parameter $epsilon$ in both possible solutions. For both possible signs of $epsilon$, we extract a variety of upper bounds that are in interplay with $a_*$. Although by approaching the rotation parameters to the extreme limit, the allowable range of both hair parameters becomes narrower, the hairy Kerr BH solution is a more promising candidate to play the role of the alternative compact object instead of the standard Kerr BH. The lack of tension between hairy Kerr BH with the current observation of the EHT shadow of the M87* SMBH carries this message that there is the possibility of NHT violation.
Searching for violations of the no-hair theorem (NHT) is a powerful way to test gravity, and more generally fundamental physics, particularly with regards to the existence of additional scalar fields. The first observation of a black hole (BH) shadow by the Event Horizon Telescope (EHT) has opened a new direct window onto tests of gravity in the strong-field regime, including probes of violations of the NHT. We consider two scenarios described by the Einstein-Maxwell equations of General Relativity and electromagnetism, to which we add a scalar field. In the first case we consider a minimally-coupled scalar field with a potential, whereas in the second case the field is conformally-coupled to curvature. In both scenarios we construct charged BH solutions, which are found to carry primary scalar hair. We then compute the shadows cast by these two BHs as a function of their electric charge and scalar hair parameter. Comparing these shadows to the shadow of M87* recently imaged by the EHT collaboration, we set constraints on the amount of scalar hair carried by these two BHs. The conformally-coupled case admits a regime for the hair parameter, compatible with EHT constraints, describing a so-called mutated Reissner-Nordstr{o}m BH: this solution was recently found to effectively mimic a wormhole. Our work provides novel constraints on fundamental physics, and in particular on violations of the no-hair theorem and the existence of additional scalar fields, from the shadow of M87*.
We analyze gravitational-wave data from the first LIGO detection of a binary black-hole merger (GW150914) in search of the ringdown of the remnant black hole. Using observations beginning at the peak of the signal, we find evidence of the fundamental quasinormal mode and at least one overtone, both associated with the dominant angular mode ($ell=m=2$), with $3.6sigma$ confidence. A ringdown model including overtones allows us to measure the final mass and spin magnitude of the remnant exclusively from postinspiral data, obtaining an estimate in agreement with the values inferred from the full signal. The mass and spin values we measure from the ringdown agree with those obtained using solely the fundamental mode at a later time, but have smaller uncertainties. Agreement between the postinspiral measurements of mass and spin and those using the full waveform supports the hypothesis that the GW150914 merger produced a Kerr black hole, as predicted by general relativity, and provides a test of the no-hair theorem at the ${sim}10%$ level. An independent measurement of the frequency of the first overtone yields agreement with the no-hair hypothesis at the ${sim 20}%$ level. As the detector sensitivity improves and the detected population of black hole mergers grows, we can expect that using overtones will provide even stronger tests.
We study a hairy black hole solution in the dilatonic Einstein-Gauss-Bonnet theory of gravitation, in which the Gauss-Bonnet term is non-minimally coupled to the dilaton field. Hairy black holes with spherical symmetry seem to be easily constructed with a positive Gauss-Bonnet coefficient $alpha$ within the coupling function, $f(phi) = alpha e^{gamma phi}$, in an asymptotically flat spacetime, i.e., no-hair theorem seems to be easily evaded in this theory. Therefore, it is natural to ask whether this construction can be expanded into the case with the negative coefficient $alpha$. In this paper, we present numerically the dilaton black hole solutions with a negative $alpha$ and analyze the properties of GB term through the aspects of the black hole mass. We construct the new integral constraint allowing the existence of the hairy solutions with the negative $alpha$. Through this procedure, we expand the evasion of the no-hair theorem for hairy black hole solutions.
The advent of the Event Horizon Telescope (EHT), a millimeter-wave very-long baseline interferometric array, has enabled spatially-resolved studies of the sub-horizon-scale structure for a handful of supermassive black holes. Among these, the supermassive black hole at the center of the Milky Way, Sagittarius A* (Sgr A*), presents the largest angular cross section. Thus far, these studies have focused upon measurements of the black hole spin and the validation of low-luminosity accretion models. However, a critical input into the analysis of EHT data is the structure of the black hole spacetime, and thus these observations provide the novel opportunity to test the applicability of the Kerr metric to astrophysical black holes. Here we present the first simulated images of a radiatively inefficient accretion flow (RIAF) around Sgr A* employing a quasi-Kerr metric that contains an independent quadrupole moment in addition to the mass and spin that fully characterize a black hole in general relativity. We show that these images can be significantly different from the images of a RIAF around a Kerr black hole with the same spin and demonstrate the feasibility of testing the no-hair theorem by constraining the quadrupolar deviation from the Kerr metric with existing EHT data. Equally important, we find that the disk inclination and spin orientation angles are robust to the inclusion of additional parameters, providing confidence in previous estimations assuming the Kerr metric based upon EHT observations. However, at present the limits upon potential modifications of the Kerr metric remain weak.
General relativitys no-hair theorem states that isolated astrophysical black holes are described by only two numbers: mass and spin. As a consequence, there are strict relationships between the frequency and damping time of the different modes of a perturbed Kerr black hole. Testing the no-hair theorem has been a longstanding goal of gravitational-wave astronomy. The recent detection of gravitational waves from black hole mergers would seem to make such tests imminent. We investigate how constraints on black hole ringdown parameters scale with the loudness of the ringdown signal---subject to the constraint that the post-merger remnant must be allowed to settle into a perturbative, Kerr-like state. In particular, we require that---for a given detector---the gravitational waveform predicted by numerical relativity is indistinguishable from an exponentially damped sine after time $t^text{cut}$. By requiring the post-merger remnant to settle into such a perturbative state, we find that confidence intervals for ringdown parameters do not necessarily shrink with louder signals. In at least some cases, more sensitive measurements probe later times without necessarily providing tighter constraints on ringdown frequencies and damping times. Preliminary investigations are unable to explain this result in terms of a numerical relativity artifact.