Do you want to publish a course? Click here

Optimizing the Hit Finding Algorithm for Liquid Argon TPC Neutrino Detectors Using Parallel Architectures

65   0   0.0 ( 0 )
 Added by Sophie Berkman
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Neutrinos are particles that interact rarely, so identifying them requires large detectors which produce lots of data. Processing this data with the computing power available is becoming even more difficult as the detectors increase in size to reach their physics goals. Liquid argon time projection chamber (LArTPC) neutrino experiments are expected to grow in the next decade to have 100 times more wires than in currently operating experiments, and modernization of LArTPC reconstruction code, including parallelization both at data- and instruction-level, will help to mitigate this challenge. The LArTPC hit finding algorithm is used across multiple experiments through a common software framework. In this paper we discuss a parallel implementation of this algorithm. Using a standalone setup we find speed up factors of two times from vectorization and 30--100 times from multi-threading on Intel architectures. The new version has been incorporated back into the framework so that it can be used by experiments. On a serial execution, the integrated version is about 10 times faster than the previous one and, once parallelization is enabled, further speedups comparable to the standalone program are achieved.



rate research

Read More

132 - Sophie Berkman 2020
Neutrinos are particles that interact rarely, so identifying them requires large detectors which produce lots of data. Processing this data with the computing power available is becoming more difficult as the detectors increase in size to reach their physics goals. In liquid argon time projection chambers (TPCs) the charged particles from neutrino interactions produce ionization electrons which drift in an electric field towards a series of collection wires, and the signal on the wires is used to reconstruct the interaction. The MicroBooNE detector currently collecting data at Fermilab has 8000 wires, and planned future experiments like DUNE will have 100 times more, which means that the time required to reconstruct an event will scale accordingly. Modernization of liquid argon TPC reconstruction code, including vectorization, parallelization and code portability to GPUs, will help to mitigate these challenges. The liquid argon TPC hit finding algorithm within the texttt{LArSoft}xspace framework used across multiple experiments has been vectorized and parallelized. This increases the speed of the algorithm on the order of ten times within a standalone version on Intel architectures. This new version has been incorporated back into texttt{LArSoft}xspace so that it can be generally used. These methods will also be applied to other low-level reconstruction algorithms of the wire signals such as the deconvolution. The applications and performance of this modernized liquid argon TPC wire reconstruction will be presented.
The ICARUS T600 liquid argon (LAr) time projection chamber (TPC) underwent a major overhaul at CERN in 2016-2017 to prepare for the operation at FNAL in the Short Baseline Neutrino (SBN) program. This included a major upgrade of the photo-multiplier system and of the TPC wire read-out electronics. The full TPC wire read-out electronics together with the new wire biasing and interconnection scheme are described. The design of a new signal feed-through flange is also a fundamental piece of this overhaul whose major feature is the integration of all electronics components onto the signal flange. Initial functionality tests of the full TPC electronics chain installed in the T600 detector at FNAL are also described.
The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNEs single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Current induced on each TPC wire is amplified and shaped by custom low-power, low-noise ASICs immersed in the liquid argon. The digitization of the signal waveform occurs outside the cryostat. Using data from the first year of MicroBooNE operations, several excess noise sources in the TPC were identified and mitigated. The residual equivalent noise charge (ENC) after noise filtering varies with wire length and is found to be below 400 electrons for the longest wires (4.7 m). The response is consistent with the cold electronics design expectations and is found to be stable with time and uniform over the functioning channels. This noise level is significantly lower than previous experiments utilizing warm front-end electronics.
136 - R. Acciarri , C. Adams , J. Asaadi 2013
Electron recombination in highly ionizing stopping protons and deuterons is studied in the ArgoNeuT detector. The data are well modeled by either a Birks model or a modified form of the Box model. The dependence of recombination on the track angle with respect to the electric field direction is much weaker than the predictions of the Jaffe columnar theory and by theoretical-computational simulations.
Impurities in noble liquid detectors used for neutrino and dark matter experiments can significantly impact the quality of data. We present an experimentally verified model for describing the dynamics of impurity distributions in liquid argon (LAr) detectors. The model considers sources, sinks, and transport of impurities within and between the gas and liquid argon phases. Measurements of oxygen concentrations in a 20-L LAr multi-purpose test stand are compared to calculations made with this model to show that an accurate description of the concentrations under various operational conditions can be obtained. A result of this analysis is a determination of Henrys coefficient for oxygen in LAr. These calculations also show that some processes have small effects on the impurity dynamics and excluding them yields a solution as a sum of two exponential terms. This solution provides a simple way to extract Henrys coefficient with negligible approximation error. It is applied to the data and the Henrys coefficient for oxygen in LAr is obtained as 0.84$^{+0.09}_{-0.05}$, consistent with literature results. Based on the analysis of the data with the model, we further suggest that, for a large liquid argon detector, barriers to flow (baffles) installed in the gas phase to restrict flow can help reduce the ultimate impurity concentration in the LAr.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا