In the mid-19th century, both the laws of mechanics and thermodynamics were known, and both appeared fundamental. This was changed by Boltzmann and Gibbs, who showed that thermodynamics can be *derived*, by applying mechanics to very large systems, and making simple statistical assumptions about their behavior. Similarly, when Quantum Mechanics (QM) was first discovered, it appeared to require two sets of postulates: one about the deterministic evolution of wavefunctions, and another about the probabilistic measurement process. Here again, the latter is derivable from the former: by applying unitary evolution to large systems (apparatuses, observers and environment), and making simple assumptions about their behavior, one can derive all the features of quantum measurement. We set out to demonstrate this claim, using a simple and explicit model of a quantum experiment, which we hope will be clear and compelling to the average physicist.