We employ hydrodynamics and gauge/gravity to study magneto-transport in phases of matter where translations are broken (pseudo-)spontaneously. First we provide a hydrodynamic description of systems where translations are broken homogeneously at nonzero lattice pressure and magnetic field. This allows us to determine analytic expressions for all the relevant transport coefficients. Next we construct holographic models of those phases and determine all the DC conductivities in terms of the dual black hole geometry. Combining the hydrodynamic and holographic descriptions we obtain analytic expression for the AC thermo-electric correlators. These are fixed in terms of the black hole geometry and a pinning frequency we determine numerically. We find an excellent agreement between our hydrodynamic and holographic descriptions and show that the holographic models are good avatars for the study of magneto-phonons.
We formulate a theory of dissipative hydrodynamics with spontaneously broken translations, describing charge density waves in a clean isotropic electronic crystal. We identify a novel linear transport coefficient, lattice pressure, capturing the effects of background strain and thermal expansion in a crystal. We argue that lattice pressure is a generic feature of systems with spontaneously broken translations and must be accounted for while building and interpreting holographic models. We also provide the first calculation of the coefficients of thermal and chemical expansion in a holographic electronic crystal.
We study the spectral function of fermions in a holographic set up with bulk Dirac mass in the regime beyond the conformal unitarity bound, and find that spectral function has the dispersion relation with tachyonic behavior, indicating an instability. Based on linearity between the density and the position of the tip of the k-gap, we suggest that this instability is toward the charge density wave(CDW) and the position of the tip can be identified as the wave vector of CDW. For the physical origin, we point out the similarity of unitarity violation in our non-Fermi Liquid theory and nesting phenomena in the Fermi liquid theory as the mechanism of CDW instability.
We obtain explicit expressions for the thermoelectric transport coefficients of a strongly coupled, planar medium in the presence of an orthogonal magnetic field and momentum-dissipating processes. The computations are performed within the gauge/gravity framework where the momentum dissipation mechanism is introduced by including a mass term for the bulk graviton. Relying on the structure of the computed transport coefficients and promoting the parameters to become dynamical functions, we propose a holography inspired phenomenology open to a direct comparison with experimental data from the cuprates.
In this paper, we investigate the AC charge transport in the holographic Horndeski gravity and identify a metal-semiconductor like transition that is driven by the Horndeski coupling. Moreover, we fit our numeric data by the Drude formula in slow relaxation cases.
We consider transport of heat and charge in holographic lattices which are phases of strongly coupled matter in which translations are broken explicitly. In these systems, we study a spontaneous density wave that breaks translations incommensurately to the lattice. The emergent gapless mode due to symmetry breaking couples to the heat current impacting transport at low frequencies. We study the effects of this coupling when the mode is freely sliding as well as after the introduction of a small deformation parameter which pins down the density wave. We prove that the DC transport coefficients are discontinuous in the limit of the pinning parameter going to zero. From the perspective of finite frequency thermoelectric conductivity, this limiting process is accompanied by the transfer of spectral weight to frequencies set by the pinning parameter. As expected, for weak momentum relaxation, this spectral weight transfer appears as a shift of the Drude peak.