Do you want to publish a course? Click here

Robust Coreset for Continuous-and-Bounded Learning (with Outliers)

145   0   0.0 ( 0 )
 Added by Zixiu Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this big data era, we often confront large-scale data in many machine learning tasks. A common approach for dealing with large-scale data is to build a small summary, {em e.g.,} coreset, that can efficiently represent the original input. However, real-world datasets usually contain outliers and most existing coreset construction methods are not resilient against outliers (in particular, the outliers can be located arbitrarily in the space by an adversarial attacker). In this paper, we propose a novel robust coreset method for the {em continuous-and-bounded learning} problem (with outliers) which includes a broad range of popular optimization objectives in machine learning, like logistic regression and $ k $-means clustering. Moreover, our robust coreset can be efficiently maintained in fully-dynamic environment. To the best of our knowledge, this is the first robust and fully-dynamic coreset construction method for these optimization problems. We also conduct the experiments to evaluate the effectiveness of our robust coreset in practice.



rate research

Read More

158 - Tyler Maunu , Gilad Lerman 2019
We study the problem of robust subspace recovery (RSR) in the presence of adversarial outliers. That is, we seek a subspace that contains a large portion of a dataset when some fraction of the data points are arbitrarily corrupted. We first examine a theoretical estimator that is intractable to calculate and use it to derive information-theoretic bounds of exact recovery. We then propose two tractable estimators: a variant of RANSAC and a simple relaxation of the theoretical estimator. The two estimators are fast to compute and achieve state-of-the-art theoretical performance in a noiseless RSR setting with adversarial outliers. The former estimator achieves better theoretical guarantees in the noiseless case, while the latter estimator is robust to small noise, and its guarantees significantly improve with non-adversarial models of outliers. We give a complete comparison of guarantees for the adversarial RSR problem, as well as a short discussion on the estimation of affine subspaces.
Semi-supervised learning (SSL) algorithms have had great success in recent years in limited labeled data regimes. However, the current state-of-the-art SSL algorithms are computationally expensive and entail significant compute time and energy requirements. This can prove to be a huge limitation for many smaller companies and academic groups. Our main insight is that training on a subset of unlabeled data instead of entire unlabeled data enables the current SSL algorithms to converge faster, thereby reducing the computational costs significantly. In this work, we propose RETRIEVE, a coreset selection framework for efficient and robust semi-supervised learning. RETRIEVE selects the coreset by solving a mixed discrete-continuous bi-level optimization problem such that the selected coreset minimizes the labeled set loss. We use a one-step gradient approximation and show that the discrete optimization problem is approximately submodular, thereby enabling simple greedy algorithms to obtain the coreset. We empirically demonstrate on several real-world datasets that existing SSL algorithms like VAT, Mean-Teacher, FixMatch, when used with RETRIEVE, achieve a) faster training times, b) better performance when unlabeled data consists of Out-of-Distribution(OOD) data and imbalance. More specifically, we show that with minimal accuracy degradation, RETRIEVE achieves a speedup of around 3X in the traditional SSL setting and achieves a speedup of 5X compared to state-of-the-art (SOTA) robust SSL algorithms in the case of imbalance and OOD data.
We provide a framework for incorporating robustness -- to perturbations in the transition dynamics which we refer to as model misspecification -- into continuous control Reinforcement Learning (RL) algorithms. We specifically focus on incorporating robustness into a state-of-the-art continuous control RL algorithm called Maximum a-posteriori Policy Optimization (MPO). We achieve this by learning a policy that optimizes for a worst case expected return objective and derive a corresponding robust entropy-regularized Bellman contraction operator. In addition, we introduce a less conservative, soft-robust, entropy-regularized objective with a corresponding Bellman operator. We show that both, robust and soft-robust policies, outperform their non-robust counterparts in nine Mujoco domains with environment perturbations. In addition, we show improved robust performance on a high-dimensional, simulated, dexterous robotic hand. Finally, we present multiple investigative experiments that provide a deeper insight into the robustness framework. This includes an adaptation to another continuous control RL algorithm as well as learning the uncertainty set from offline data. Performance videos can be found online at https://sites.google.com/view/robust-rl.
We develop fast spectral algorithms for tensor decomposition that match the robustness guarantees of the best known polynomial-time algorithms for this problem based on the sum-of-squares (SOS) semidefinite programming hierarchy. Our algorithms can decompose a 4-tensor with $n$-dimensional orthonormal components in the presence of error with constant spectral norm (when viewed as an $n^2$-by-$n^2$ matrix). The running time is $n^5$ which is close to linear in the input size $n^4$. We also obtain algorithms with similar running time to learn sparsely-used orthogonal dictionaries even when feature representations have constant relative sparsity and non-independent coordinates. The only previous polynomial-time algorithms to solve these problem are based on solving large semidefinite programs. In contrast, our algorithms are easy to implement directly and are based on spectral projections and tensor-mode rearrangements. Or work is inspired by recent of Hopkins, Schramm, Shi, and Steurer (STOC16) that shows how fast spectral algorithms can achieve the guarantees of SOS for average-case problems. In this work, we introduce general techniques to capture the guarantees of SOS for worst-case problems.
Many real-world physical control systems are required to satisfy constraints upon deployment. Furthermore, real-world systems are often subject to effects such as non-stationarity, wear-and-tear, uncalibrated sensors and so on. Such effects effectively perturb the system dynamics and can cause a policy trained successfully in one domain to perform poorly when deployed to a perturbed version of the same domain. This can affect a policys ability to maximize future rewards as well as the extent to which it satisfies constraints. We refer to this as constrained model misspecification. We present an algorithm that mitigates this form of misspecification, and showcase its performance in multiple simulated Mujoco tasks from the Real World Reinforcement Learning (RWRL) suite.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا