No Arabic abstract
Based on new observations during 2015-2020 and published data, the unusual eruptive variables PV Cep and V350 Cep are examined. It is shown that PV Cep underwent a regular outburst followed by a drop in brightness that lasted overall from 2011 to 2019 and is still in a deep minimum. The outburst was accompanied by substantial changes in the intensity and profiles of a number of lines, including Ha, [SII], and [OI]. The forbidden lines generally have negative radial velocities and can be divided into four components, with variable velocities and relative intensities. V350 Cep essentially is at a maximum brightness level over the entire time and its spectrum is practically unaltered. The available data suggest that the pronounced P Cyg profile of the Ha line in the spectrum of V350 Cep appeared several years after the luminosity rise, in 1986. The luminosities of the stars in the current state are estimated to be 20 L(sun) and 3.3 L(sun), respectively. It is concluded that both stars may represent a so-called intermediate objects between the FUor and EXor classes.
New photometric data from CCD UBVRI observations of the PMS star V350 Cep during the period from March 2014 to May 2017 are presented. In the period April-May 2016 we registered a deep fades event in the brightness of the star with amplitudes $Delta I$ = 1.75 mag, $Delta R$ = 1.69 mag, $Delta V$ = 1.77 mag and $Delta B$ = 2.16 mag. Simultaneously with the fades in the brightness, the change in the stars color indices has been observed. V350 Cep indicates the typical for stars of UXor type blueing effect during the deep minimum of brightness. During the second half of 2016 V350 Cep restores its brightness to a level close to the maximum. Since the star has been studied as a possible FUor object in previous studies, the possible cause of the deep decline is a decrease in the accretion rate. Another possible cause is obscuration from clumps of dust orbiting at the vicinity of the star.
We determine the fundamental parameters of SPB and Beta Cep candidate stars observed by the Kepler satellite mission and estimate the expected types of non-radial pulsators by comparing newly obtained high-resolution spectra with synthetic spectra computed on a grid of stellar parameters assuming LTE and check for NLTE effects for the hottest stars. For comparison, we determine Teff independently from fitting the spectral energy distribution of the stars obtained from the available photometry. We determine Teff, log(g), micro-turbulent velocity, vsin(i), metallicity, and elemental abundance for 14 of the 16 candidate stars, two of the stars are spectroscopic binaries. No significant influence of NLTE effects on the results could be found. For hot stars, we find systematic deviations of the determined effective temperatures from those given in the Kepler Input Catalogue. The deviations are confirmed by the results obtained from ground-based photometry. Five stars show reduced metallicity, two stars are He-strong, one is He-weak, and one is Si-strong. Two of the stars could be Beta Cep/SPB hybrid pulsators, four SPB pulsators, and five more stars are located close to the borders of the SPB instability region.
We used new HARPS-N spectra to revisitate the projection factor of Delta Cep and to directly measure the specific contribution of the velocity gradient within the atmosphere. By introducing an hydrodynamical model we could also determine the semi-theoretical values of the correction factor between the gas movement and the optical continuum by assuming radiative transfer in plane-parallel or sherically symmetric geometries, respectively.
ASASSN-13db is a M5-type star with a protoplanetary disk, the lowest mass star known to experience accretion outbursts. Since its discovery in 2013, it has experienced two outbursts, the second of which started in November 2014 and lasted until February 2017. We use high- and low-resolution spectroscopy and time-resolved photometry from the ASAS-SN survey, the LCOGT and the Beacon Observatory to study the lightcurve and the dynamical and physical properties of the accretion flow. The 2014-2017 outburst lasted for nearly 800 days. A 4.15d period in the lightcurve likely corresponds to rotational modulation of a star with hot spot(s). The spectra show multiple emission lines with variable inverse P-Cygni profiles and a highly variable blueshifted absorption below the continuum. Line ratios from metallic emission lines (Fe I/Fe II, Ti I/Ti II) suggest temperatures of $sim$5800-6000 K in the accretion flow. Photometrically and spectroscopically, the 2014-2017 event displays an intermediate behavior between EXors and FUors. The accretion rate (.{M}=1-3$times$10$^{-7}$M$_odot$/yr), about 2 orders of magnitude higher than the accretion rate in quiescence, is not significantly different from the accretion rate observed in 2013. The absorption features in the spectra suggest that the system is viewed at a high angle and drives a powerful, non-axisymmetric wind, maybe related to magnetic reconnection. The properties of ASASSN-13db suggest that temperatures lower than those for solar-type stars are needed for modeling accretion in very low-mass systems. Finally, the rotational modulation during the outburst reveals that accretion-related structures settled after the begining of the outburst and can be relatively stable and long-lived. Our work also demonstrates the power of time-resolved photometry and spectroscopy to explore the properties of variable and outbursting stars. (Abridged).
A tomographic method, aiming at probing velocity fields at depth in stellar atmospheres, is applied to the red supergiant star {mu} Cep and to snapshots of 3D radiative-hydrodynamics simulation in order to constrain atmospheric motions and relate them to photometric variability.