No Arabic abstract
For all integers $k,d$ such that $k geq 3$ and $k/2leq d leq k-1$, let $n$ be a sufficiently large integer {rm(}which may not be divisible by $k${rm)} and let $sle lfloor n/krfloor-1$. We show that if $H$ is a $k$-uniform hypergraph on $n$ vertices with $delta_{d}(H)>binom{n-d}{k-d}-binom{n-d-s+1}{k-d}$, then $H$ contains a matching of size $s$. This improves a recent result of Lu, Yu, and Yuan and also answers a question of Kuhn, Osthus, and Townsend. In many cases, our result can be strengthened to $sleq lfloor n/krfloor$, which then covers the entire possible range of $s$. On the other hand, there are examples showing that the result does not hold for certain $n, k, d$ and $s= lfloor n/krfloor$.
Determine the size of $r$-graphs with given graph parameters is an interesting problem. Chvatal and Hanson (JCTB, 1976) gave a tight upper bound of the size of 2-graphs with restricted maximum degree and matching number; Khare (DM, 2014) studied the same problem for linear $3$-graphs with restricted matching number and maximum degree. In this paper, we give a tight upper bound of the size of $3$-graphs with bounded codegree and matching number.
For $ngeq 3$, let $r=r(n)geq 3$ be an integer. A hypergraph is $r$-uniform if each edge is a set of $r$ vertices, and is said to be linear if two edges intersect in at most one vertex. In this paper, the number of linear $r$-uniform hypergraphs on $ntoinfty$ vertices is determined asymptotically when the number of edges is $m(n)=o(r^{-3}n^{ frac32})$. As one application, we find the probability of linearity for the independent-edge model of random $r$-uniform hypergraph when the expected number of edges is $o(r^{-3}n^{ frac32})$. We also find the probability that a random $r$-uniform linear hypergraph with a given number of edges contains a given subhypergraph.
Gutman and Wagner proposed the concept of matching energy (ME) and pointed out that the chemical applications of ME go back to the 1970s. Let $G$ be a simple graph of order $n$ and $mu_1,mu_2,ldots,mu_n$ be the roots of its matching polynomial. The matching energy of $G$ is defined to be the sum of the absolute values of $mu_{i} (i=1,2,ldots,n)$. In this paper, we characterize the graphs with minimal matching energy among all unicyclic and bicyclic graphs with a given diameter $d$.
Let $mathscr{G}_{n,beta}$ be the set of graphs of order $n$ with given matching number $beta$. Let $D(G)$ be the diagonal matrix of the degrees of the graph $G$ and $A(G)$ be the adjacency matrix of the graph $G$. The largest eigenvalue of the nonnegative matrix $A_{alpha}(G)=alpha D(G)+A(G)$ is called the $alpha$-spectral radius of $G$. The graphs with maximal $alpha$-spectral radius in $mathscr{G}_{n,beta}$ are completely characterized in this paper. In this way we provide a general framework to attack the problem of extremal spectral radius in $mathscr{G}_{n,beta}$. More precisely, we generalize the known results on the maximal adjacency spectral radius in $mathscr{G}_{n,beta}$ and the signless Laplacian spectral radius.
A connected graph $G$ is a cactus if any two of its cycles have at most one common vertex. Let $ell_n^m$ be the set of cacti on $n$ vertices with matching number $m.$ S.C. Li and M.J. Zhang determined the unique graph with the maximum signless Laplacian spectral radius among all cacti in $ell_n^m$ with $n=2m$. In this paper, we characterize the case $ngeq 2m+1$. This confirms the conjecture of Li and Zhang(S.C. Li, M.J. Zhang, On the signless Laplacian index of cacti with a given number of pendant vetices, Linear Algebra Appl. 436, 2012, 4400--4411). Further, we characterize the unique graph with the maximum signless Laplacian spectral radius among all cacti on $n$ vertices.