No Arabic abstract
We study the geometric Uhlmann phase of entangled mixed states in a composite system made of two coupled spin-$frac 1 2$ particles with a magnetic field acting on one of them. Within a depolarizing channel setup, an exact analytical expression for such a phase in each subsystem is derived. We find an explicit connection to the concurrence of the depolarizing channel density matrix, which allows to characterize the features of the Uhlmann phase in terms of the degree of entanglement in the system. In the space of field direction and coupling parameter, it exhibits a phase singularity revealing a topological transition between orders with different winding numbers. The transition occurs for fields lying in the equator of the sphere of directions and at critical values of the coupling which can be controlled by tuning the depolarization strength. Notably, under these conditions the concurrence of the composite system is bounded to the range $[0,1/2]$. We also compare the calculated Uhlmann phase to an interferometric phase, which has been formulated as an alternative for density matrices. The latter does not present a phase vortex, although they coincide in the weak entanglement regime, for vanishing depolarization (pure states). Otherwise they behave clearly different in the strong entanglement regime.
We define the Uhlmann number as an extension of the Chern number, and we use this quantity to describe the topology of 2D translational invariant Fermionic systems at finite temperature. We consider two paradigmatic systems and we study the changes in their topology through the Uhlmann number. Through the linear response theory we linked two geometrical quantities of the system, the mean Uhlmann curvature and the Uhlmann number, to directly measurable physical quantities, i.e. the dynamical susceptibility and to the dynamical conductivity, respectively.
The topological phase factor induced on interfering electrons by external quantum electromagnetic fields has been studied. Two and three electron interference experiments inside distant cavities are considered and the influence of correlated photons on the phase factors is investigated. It is shown that the classical or quantum correlations of the irradiating photons are transferred to the topological phases. The effect is quantified in terms of Weyl functions for the density operators of the photons and illustrated with particular examples. The scheme employs the generalized phase factor as a mechanism for information transfer from the photons to the electric charges. In this sense, the scheme may be useful in the context of flying qubits (corresponding to the photons) and stationary qubits (electrons), and the conversion from one type to the other.
We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks.
We show that entanglement monotones can characterize the pronounced enhancement of entanglement at a quantum phase transition if they are sensitive to long-range high order correlations. These monotones are found to develop a sharp peak at the critical point and to exhibit universal scaling. We demonstrate that similar features are shared by noise correlations and verify that these experimentally accessible quantities indeed encode entanglement information and probe separability.