Do you want to publish a course? Click here

MIMO Transmission Under Discrete Input Signal Constraints

130   0   0.0 ( 0 )
 Added by Jie Feng
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a multiple-input multipleoutput (MIMO) transmission strategy that is closer to the Shannon limit than the existing strategies. Different from most existing strategies which only consider uniformly distributed discrete input signals, we present a unified framework to optimize the MIMO precoder and the discrete input signal distribution jointly. First, a general model of MIMO transmission under discrete input signals and its equivalent formulation are established. Next, in order to maximize the mutual information between the input and output signals, we provide an algorithm that jointly optimizes the precoder and the input distribution. Finally, we compare our strategy with other existing strategies in the simulation. Numerical results indicate that our strategy narrows the gap between the mutual information and Shannon limit, and shows a lower frame error rate in simulation.



rate research

Read More

Multiple-input multiple-output non-orthogonal multiple access (MIMO-NOMA) cellular network is promising for supporting massive connectivity. This paper exploits low-latency machine learning in the MIMO-NOMA uplink transmission environment, where a substantial amount of data must be uploaded from multiple data sources to a one-hop away edge server for machine learning. A delay-aware edge learning framework with the collaboration of data sources, the edge server, and the base station, referred to as DACEL, is proposed. Based on the delay analysis of DACEL, a NOMA channel allocation algorithm is further designed to minimize the learning delay. The simulation results show that the proposed algorithm outperforms the baseline schemes in terms of learning delay reduction.
We study the uplink performance of massive multiple-input multiple-output (MIMO) when users are equipped with multiple antennas. To this end, we consider a generalized channel model that accounts for line-of-sight propagation and spatially correlated multipath fading. Most importantly, we employ the Weichselberger correlation model, which has been shown to alleviate the deficiencies of the popular Kronecker model. The main contribution of this paper is a rigorous closed-form expression for the uplink spectral efficiency using maximum-ratio combining and minimum mean square error channel estimation. Our result is a non-trivial generalization of previous results on massive MIMO with spatially correlated channels, thereby enabling us to have suitable designs for future massive MIMO systems. Numerical simulations corroborate our analysis and provide useful insights on how different propagation conditions affect system performance.
Federated learning (FL) has been recognized as a viable distributed learning paradigm which trains a machine learning model collaboratively with massive mobile devices in the wireless edge while protecting user privacy. Although various communication schemes have been proposed to expedite the FL process, most of them have assumed ideal wireless channels which provide reliable and lossless communication links between the server and mobile clients. Unfortunately, in practical systems with limited radio resources such as constraint on the training latency and constraints on the transmission power and bandwidth, transmission of a large number of model parameters inevitably suffers from quantization errors (QE) and transmission outage (TO). In this paper, we consider such non-ideal wireless channels, and carry out the first analysis showing that the FL convergence can be severely jeopardized by TO and QE, but intriguingly can be alleviated if the clients have uniform outage probabilities. These insightful results motivate us to propose a robust FL scheme, named FedTOE, which performs joint allocation of wireless resources and quantization bits across the clients to minimize the QE while making the clients have the same TO probability. Extensive experimental results are presented to show the superior performance of FedTOE for a deep learning-based classification task with transmission latency constraints.
Motivated by damage due to heating in sensor operation, we consider the throughput optimal offline data scheduling problem in an energy harvesting transmitter such that the resulting temperature increase remains below a critical level. We model the temperature dynamics of the transmitter as a linear system and determine the optimal transmit power policy under such temperature constraints as well as energy harvesting constraints over an AWGN channel. We first derive the structural properties of the solution for the general case with multiple energy arrivals. We show that the optimal power policy is piecewise monotone decreasing with possible jumps at the energy harvesting instants. We derive analytical expressions for the optimal solution in the single energy arrival case. We show that, in the single energy arrival case, the optimal power is monotone decreasing, the resulting temperature is monotone increasing, and both remain constant after the temperature hits the critical level. We then generalize the solution for the multiple energy arrival case.
Flexible numerologies are being considered as part of designs for 5G systems to support vertical services with diverse requirements such as enhanced mobile broadband, ultra-reliable low-latency communications, and massive machine type communication. Different vertical services can be multiplexed in either frequency domain, time domain, or both. In this paper, we investigate the use of spatial multiplexing of services using MU-MIMO where the numerologies for different users may be different. The users are grouped according to the chosen numerology and a separate pre-coder and FFT size is used per numerology at the transmitter. The pre-coded signals for the multiple numerologies are added in the time domain before transmission. We analyze the performance gains of this approach using capacity analysis and link level simulations using conjugate beamforming and signal-to-leakage noise ratio maximization techniques. We show that the MU interference between users with different numerologies can be suppressed efficiently with reasonable number of antennas at the base-station. This feature enables MU-MIMO techniques to be applied for 5G across different numerologies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا