No Arabic abstract
Graphs are a common model for complex relational data such as social networks and protein interactions, and such data can evolve over time (e.g., new friendships) and be noisy (e.g., unmeasured interactions). Link prediction aims to predict future edges or infer missing edges in the graph, and has diverse applications in recommender systems, experimental design, and complex systems. Even though link prediction algorithms strongly depend on the set of edges in the graph, existing approaches typically do not modify the graph topology to improve performance. Here, we demonstrate how simply adding a set of edges, which we call a emph{proposal set}, to the graph as a pre-processing step can improve the performance of several link prediction algorithms. The underlying idea is that if the edges in the proposal set generally align with the structure of the graph, link prediction algorithms are further guided towards predicting the right edges; in other words, adding a proposal set of edges is a signal-boosting pre-processing step. We show how to use existing link prediction algorithms to generate effective proposal sets and evaluate this approach on various synthetic and empirical datasets. We find that proposal sets meaningfully improve the accuracy of link prediction algorithms based on both neighborhood heuristics and graph neural networks. Code is available at url{https://github.com/CUAI/Edge-Proposal-Sets}.
In todays networked society, many real-world problems can be formalized as predicting links in networks, such as Facebook friendship suggestions, e-commerce recommendations, and the prediction of scientific collaborations in citation networks. Increasingly often, link prediction problem is tackled by means of network embedding methods, owing to their state-of-the-art performance. However, these methods lack transparency when compared to simpler baselines, and as a result their robustness against adversarial attacks is a possible point of concern: could one or a few small adversarial modifications to the network have a large impact on the link prediction performance when using a network embedding model? Prior research has already investigated adversarial robustness for network embedding models, focused on classification at the node and graph level. Robustness with respect to the link prediction downstream task, on the other hand, has been explored much less. This paper contributes to filling this gap, by studying adversarial robustness of Conditional Network Embedding (CNE), a state-of-the-art probabilistic network embedding model, for link prediction. More specifically, given CNE and a network, we measure the sensitivity of the link predictions of the model to small adversarial perturbations of the network, namely changes of the link status of a node pair. Thus, our approach allows one to identify the links and non-links in the network that are most vulnerable to such perturbations, for further investigation by an analyst. We analyze the characteristics of the most and least sensitive perturbations, and empirically confirm that our approach not only succeeds in identifying the most vulnerable links and non-links, but also that it does so in a time-efficient manner thanks to an effective approximation.
Cross-platform account matching plays a significant role in social network analytics, and is beneficial for a wide range of applications. However, existing methods either heavily rely on high-quality user generated content (including user profiles) or suffer from data insufficiency problem if only focusing on network topology, which brings researchers into an insoluble dilemma of model selection. In this paper, to address this problem, we propose a novel framework that considers multi-level graph convolutions on both local network structure and hypergraph structure in a unified manner. The proposed method overcomes data insufficiency problem of existing work and does not necessarily rely on user demographic information. Moreover, to adapt the proposed method to be capable of handling large-scale social networks, we propose a two-phase space reconciliation mechanism to align the embedding spaces in both network partitioning based parallel training and account matching across different social networks. Extensive experiments have been conducted on two large-scale real-life social networks. The experimental results demonstrate that the proposed method outperforms the state-of-the-art models with a big margin.
Network embedding aims to learn low-dimensional representations of nodes while capturing structure information of networks. It has achieved great success on many tasks of network analysis such as link prediction and node classification. Most of existing network embedding algorithms focus on how to learn static homogeneous networks effectively. However, networks in the real world are more complex, e.g., networks may consist of several types of nodes and edges (called heterogeneous information) and may vary over time in terms of dynamic nodes and edges (called evolutionary patterns). Limited work has been done for network embedding of dynamic heterogeneous networks as it is challenging to learn both evolutionary and heterogeneous information simultaneously. In this paper, we propose a novel dynamic heterogeneous network embedding method, termed as DyHATR, which uses hierarchical attention to learn heterogeneous information and incorporates recurrent neural networks with temporal attention to capture evolutionary patterns. We benchmark our method on four real-world datasets for the task of link prediction. Experimental results show that DyHATR significantly outperforms several state-of-the-art baselines.
Many real networks that are inferred or collected from data are incomplete due to missing edges. Missing edges can be inherent to the dataset (Facebook friend links will never be complete) or the result of sampling (one may only have access to a portion of the data). The consequence is that downstream analyses that consume the network will often yield less accurate results than if the edges were complete. Community detection algorithms, in particular, often suffer when critical intra-community edges are missing. We propose a novel consensus clustering algorithm to enhance community detection on incomplete networks. Our framework utilizes existing community detection algorithms that process networks imputed by our link prediction based algorithm. The framework then merges their multiple outputs into a final consensus output. On average our method boosts performance of existing algorithms by 7% on artificial data and 17% on ego networks collected from Facebook.
State-of-the-art link prediction utilizes combinations of complex features derived from network panel data. We here show that computationally less expensive features can achieve the same performance in the common scenario in which the data is available as a sequence of interactions. Our features are based on social vector clocks, an adaptation of the vector-clock concept introduced in distributed computing to social interaction networks. In fact, our experiments suggest that by taking into account the order and spacing of interactions, social vector clocks exploit different aspects of link formation so that their combination with previous approaches yields the most accurate predictor to date.