Do you want to publish a course? Click here

Shocks and dust formation in nova V809 Cep

80   0   0.0 ( 0 )
 Added by Aliya-Nur Babul
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The discovery that many classical novae produce detectable GeV $gamma$-ray emission has raised the question of the role of shocks in nova eruptions. Here we use radio observations of nova V809 Cep (Nova Cep 2013) with the Jansky Very Large Array to show that it produced non-thermal emission indicative of particle acceleration in strong shocks for more than a month starting about six weeks into the eruption, quasi-simultaneous with the production of dust. Broadly speaking, the radio emission at late times -- more than a six months or so into the eruption -- is consistent with thermal emission from $10^{-4} M_odot$ of freely expanding, $10^4$~K ejecta. At 4.6 and 7.4 GHz, however, the radio light-curves display an initial early-time peak 76 days after the discovery of the eruption in the optical ($t_0$). The brightness temperature at 4.6 GHz on day 76 was greater than $10^5 K$, an order of magnitude above what is expected for thermal emission. We argue that the brightness temperature is the result of synchrotron emission due to internal shocks within the ejecta. The evolution of the radio spectrum was consistent with synchrotron emission that peaked at high frequencies before low frequencies, suggesting that the synchrotron from the shock was initially subject to free-free absorption by optically thick ionized material in front of the shock. Dust formation began around day 37, and we suggest that internal shocks in the ejecta were established prior to dust formation and caused the nucleation of dust.



rate research

Read More

60 - E. Aydi , L. Chomiuk , J. Strader 2019
We present a detailed study of the 2017 eruption of the classical nova ASASSN-17pf (LMCN 2017-11a), which is located in the Large Magellanic Cloud, including data from AAVSO, ASAS-SN, SALT, SMARTS, SOAR, and the Neil Gehrels textit{Swift} Observatory. The optical light-curve is characterized by multiple maxima (flares) on top of a slowly evolving light-curve (with a decline time, $t_2>$ 100 d). The maxima correlate with the appearance of new absorption line systems in the optical spectra characterized by increasing radial velocities. We suggest that this is evidence of multiple episodes of mass-ejection with increasing expansion velocities. The line profiles in the optical spectra indicate very low expansion velocities (FWHM $sim$ 190 km s$^{-1}$), making this nova one of the slowest expanding ever observed, consistent with the slowly evolving light-curve. The evolution of the colors and spectral energy distribution show evidence of decreasing temperatures and increasing effective radii for the pseudo-photosphere during each maximum. The optical and infrared light-curves are consistent with dust formation 125 days post-discovery. We speculate that novae showing several optical maxima have multiple mass-ejection episodes leading to shocks that may drive $gamma$-ray emission and dust formation.
BVRI photometry and low-, medium- and high-resolution Echelle fluxed spectroscopy is presented and discussed for three faint, heavily reddened novae of the FeII-type which erupted in 2013. V1830 Aql reached a peak V=15.2 mag on 2013 Oct 30.3 UT and suffered from a huge E(B-V)~2.6 mag reddening. After a rapid decline, when the nova was Delta(V)=1.7 mag below maximum, it entered a flat plateau where it remained for a month until Solar conjunction prevented further observations. Similar values were observed for V556 Ser, that peaked near Rc=12.3 around 2013 Nov 25 and soon went lost in the glare of sunset sky. V809 Cep peaked at V=11.18 on 2013 Feb 3.6. The reddening is E(B-V)~1.7 and the nova is located within or immediately behind the spiral Outer Arm, at a distance of ~6.5 kpc as constrained by the velocity of interstellar atomic lines and the rate of decline from maximum. While passing at t_3, the nova begun to form a thick dust layer that caused a peak extinction of Delta(V)>5 mag, and took 125 days to completely dissolve. The dust extinction turned from neutral to selective around 6000 Ang. Monitoring the time evolution of the integrated flux of emission lines allowed to constrain the region of dust formation in the ejecta to be above the region of formation of OI 7774 Ang and below that of CaII triplet. Along the decline from maximum and before the dust obscuration, the emission line profiles of Nova Cep 2013 developed a narrow component (FWHM=210 km/sec) superimposed onto the much larger normal profile, making it a member of the so far exclusive but growing club of novae displaying this peculiar feature. Constrains based on the optical thickness of the innermost part of the ejecta and on the radiated flux, place the origin of the narrow feature within highly structured internal ejecta and well away from the central binary.
Evidence for shocks in nova outflows include (1) multiple velocity components in the optical spectra; (2) keV X-ray emission weeks to months after the outburst; (3) early radio flare on timescales of months, in excess of that predicted from the freely expanding photo-ionized gas; and (4) ~ GeV gamma-rays. We present a 1D model for the shock interaction between the fast nova outflow and a dense external shell (DES) and its associated thermal X-ray, optical, and radio emission. The forward shock is radiative initially when the density of shocked gas is highest, at which times radio emission originates from the dense cooling layer immediately downstream of the shock. The radio light curve is characterized by sharper rises to maximum and later peak times at progressively lower frequencies, with a peak brightness temperature that is approximately independent of frequency. We apply our model to the recent gamma-ray classical nova V1324 Sco, obtaining an adequate fit to the early radio maximum for reasonable assumptions about the fast nova outflow and assuming the DES possesses a velocity ~1e3 km/s and mass ~ 2e-4 M_sun; the former is consistent with the velocities of narrow line absorption systems observed previously in nova spectra, while the total ejecta mass of the DES and fast outflow is consistent with that inferred independently by modeling the late radio peak. Rapid evolution of the early radio light curves require the DES possess a steep outer density profile, which may indicate that the onset of mass loss from the white dwarf was rapid, providing indirect evidence that the DES was expelled by the thermonuclear runaway event. Reprocessed X-rays from the shock absorbed by the DES at early times may contribute significantly to the optical/UV emission, which we speculate is responsible for the previously unexplained `plateaus and secondary maxima in nova optical light curves.
Classical novae are runaway thermonuclear burning events on the surfaces of accreting white dwarfs in close binary star systems, sometimes appearing as new naked-eye sources in the night sky. The standard model of novae predicts that their optical luminosity derives from energy released near the hot white dwarf which is reprocessed through the ejected material. Recent studies with the Fermi Large Area Telescope have shown that many classical novae are accompanied by gigaelectronvolt gamma-ray emission. This emission likely originates from strong shocks, providing new insights into the properties of nova outflows and allowing them to be used as laboratories to study the unknown efficiency of particle acceleration in shocks. Here we report gamma-ray and optical observations of the Milky Way nova ASASSN-16ma, which is among the brightest novae ever detected in gamma-rays. The gamma-ray and optical light curves show a remarkable correlation, implying that the majority of the optical light comes from reprocessed emission from shocks rather than the white dwarf. The ratio of gamma-ray to optical flux in ASASSN-16ma directly constrains the acceleration efficiency of non-thermal particles to be ~0.005, favouring hadronic models for the gamma-ray emission. The need to accelerate particles up to energies exceeding 100 gigaelectronvolts provides compelling evidence for magnetic field amplification in the shocks.
Classical novae commonly show evidence of rapid dust formation within months of the outburst. However, it is unclear how molecules and grains are able to condense within the ejecta, given the potentially harsh environment created by ionizing radiation from the white dwarf. Motivated by the evidence for powerful radiative shocks within nova outflows, we propose that dust formation occurs within the cool, dense shell behind these shocks. We incorporate a simple molecular chemistry network and classical nucleation theory with a model for the thermodynamic evolution of the post-shock gas, in order to demonstrate the formation of both carbon and forsterite ($rm Mg_2SiO_4$) grains. The high densities due to radiative shock compression ($n sim 10^{14}$ cm$^{-3}$) result in CO saturation and rapid dust nucleation. Grains grow efficiently to large sizes $gtrsim 0.1mu$m, in agreement with IR observations of dust-producing novae, and with total dust masses sufficient to explain massive extinction events such as V705 Cas. As in dense stellar winds, dust formation is CO-regulated, with carbon-rich flows producing carbon-rich grains and oxygen-rich flows primarily forming silicates. CO is destroyed by non-thermal particles accelerated at the shock, allowing additional grain formation at late times, but the efficiency of this process appears to be low. Given observations showing that individual novae produce both carbonaceous and silicate grains, we concur with previous works attributing this bimodality to chemical heterogeneity of the ejecta. Nova outflows are diverse and inhomogeneous, and the observed variety of dust formation events can be reconciled by different abundances, the range of shock properties, and the observer viewing angle. The latter may govern the magnitude of extinction, with the deepest extinction events occurring for observers within the binary equatorial plane.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا