No Arabic abstract
GitHub has become the central online platform for much of open source, hosting most open source code repositories. With this popularity, the public digital traces of GitHub are now a valuable means to study teamwork and collaboration. In many ways, however, GitHub is a convenience sample. We need to assess its representativeness, particularly how GitHubs design may alter the working patterns of its users. Here we develop a novel, extensive sample of public open source project repositories outside of centralized platforms like GitHub. We characterized these projects along a number of dimensions, and compare to a time-matched sample of corresponding GitHub projects. Compared to GitHub, these projects tend to have more collaborators, are maintained for longer periods, and tend to be more focused on academic and scientific problems.
Computational research and data analytics increasingly relies on complex ecosystems of open source software (OSS) libraries -- curated collections of reusable code that programmers import to perform a specific task. Software documentation for these libraries is crucial in helping programmers/analysts know what libraries are available and how to use them. Yet documentation for open source software libraries is widely considered low-quality. This article is a collaboration between CSCW researchers and contributors to data analytics OSS libraries, based on ethnographic fieldwork and qualitative interviews. We examine several issues around the formats, practices, and challenges around documentation in these largely volunteer-based projects. There are many different kinds and formats of documentation that exist around such libraries, which play a variety of educational, promotional, and organizational roles. The work behind documentation is similarly multifaceted, including writing, reviewing, maintaining, and organizing documentation. Different aspects of documentation work require contributors to have different sets of skills and overcome various social and technical barriers. Finally, most of our interviewees do not report high levels of intrinsic enjoyment for doing documentation work (compared to writing code). Their motivation is affected by personal and project-specific factors, such as the perceived level of credit for doing documentation work versus more technical tasks like adding new features or fixing bugs. In studying documentation work for data analytics OSS libraries, we gain a new window into the changing practices of data-intensive research, as well as help practitioners better understand how to support this often invisible and infrastructural work in their projects.
This report is a high-level summary analysis of the 2017 GitHub Open Source Survey dataset, presenting frequency counts, proportions, and frequency or proportion bar plots for every question asked in the survey.
We want to analyze visually, to what extend team members and external developers contribute to open-source projects. This gives a high-level impression about collaboration in that projects. We achieve this by recording provenance of the development process and use graph drawing on the resulting provenance graph. Our graph drawings show, which developers are jointly changed the same files -- and to what extent -- which we show at Germanys COVID-19 exposure notification app Corona-Warn-App.
In cite{CGH15} we introduced TiRS graphs and TiRS frames to create a new natural setting for duals of canonical extensions of lattices. In this continuation of cite{CGH15} we answer Problem 2 from there by characterising the perfect lattices that are dual to TiRS frames (and hence TiRS graphs). We introduce a new subclass of perfect lattices called PTi lattices and show that the canonical extensions of lattices are PTi lattices, and so are `more than just perfect lattices. We introduce morphisms of TiRS structures and put our correspondence between TiRS graphs and TiRS frames from cite{CGH15} into a full categorical framework. We illustrate our correspondences between classes of perfects lattices and classes of TiRS graphs by examples.
Quantum computing (QC) is an emerging computing paradigm with potential to revolutionize the field of computing. QC is a field that is quickly developing globally and has high barriers of entry. In this paper we explore both successful contributors to the field as well as wider QC community with the goal of understanding the backgrounds and training that helped them succeed. We gather data on 148 contributors to open-source quantum computing projects hosted on GitHub and survey 46 members of QC community. Our findings show that QC practitioners and enthusiasts have diverse backgrounds, with most of them having a PhD and trained in physics or computer science. We observe a lack of educational resources on quantum computing. Our goal for these findings is to start a conversation about how best to prepare the next generation of QC researchers and practitioners.