Do you want to publish a course? Click here

Twofold Translative Tiles in Three-Dimensional Space

159   0   0.0 ( 0 )
 Added by Chuanming Zong
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

This paper proves the following statement: {it If a convex body can form a twofold translative tiling in $mathbb{E}^3$, it must be a parallelohedron.} In other words, it must be a parallelotope, a hexagonal prism, a rhombic dodecahedron, an elongated dodecahedron, or a truncated octahedron.



rate research

Read More

This paper proves the following statement: If a convex body can form a three or fourfold translative tiling in three-dimensional space, it must be a parallelohedron. In other words, it must be a parallelotope, a hexagonal prism, a rhombic dodecahedron, an elongated dodecahedron, or a truncated octahedron.
A 3D rep-tile is a compact 3-manifold $X$ in $mathbb{R}^3$ that can be decomposed into finitely many pieces, each of which are similar to $X$, and all of which are congruent to each other. In this paper we classify all 3D rep-tiles up to homeomorphism. In particular, we show that a 3-manifold is homeomorphic to a 3D rep-tile if and only if it is the exterior of a connected graph in $S^3$.
In this paper we determine new upper bounds for the maximal density of translative packings of superballs in three dimensions (unit balls for the $l^p_3$-norm) and of Platonic and Archimedean solids having tetrahedral symmetry. Thereby, we improve Zongs recent upper bound for the maximal density of translative packings of regular tetrahedra from $0.3840ldots$ to $0.3745ldots$, getting closer to the best known lower bound of $0.3673ldots$ We apply the linear programming bound of Cohn and Elkies which originally was designed for the classical problem of densest packings of round spheres. The proofs of our new upper bounds are computational and rigorous. Our main technical contribution is the use of invariant theory of pseudo-reflection groups in polynomial optimization.
It is well known that if there exists a finite set of convex bodies on the plane with non-overlapping interiors, then there is at least one extremal one among them, i.e., some one which can be continuously taken away to the infinity (outside a large ball containing all other bodies). In 3-space a phenomenon of self-interlocking structures takes place. A self-interlocking structure is such a set of three-dimensional convex bodies with non-overlapping interiors that any infinitesimal move of any of them is possible only as a part of the move of all bodies as a solid body. Previously known self-interlocking structures are based on configurations of cut cubes, tetrahedra, and octahedra. In the present paper we discover a principally new phenomenon of 2-dimensional self-interlocking structures: a family of 2-dimensional polygons in 3-space where no infinitesimal move of any piece is possible. (Infinitely thin) tiles are used to create {em decahedra}, which, in turn, used to create columns, which turn out to be stable when we fix some two extreme tiles. Seemingly, our work is the first appearance of the structure which is stable if we fix just two tiles (and not all but one). Two-dimensional self-interlocking structures naturally lead to three-dimensional structures possessing the same properties.
321 - Masashi Shinohara 2013
A subset $X$ in the $d$-dimensional Euclidean space is called a $k$-distance set if there are exactly $k$ distances between two distinct points in $X$. Einhorn and Schoenberg conjectured that the vertices of the regular icosahedron is the only 12-point three-distance set in $mathbb{R}^3$ up to isomorphism. In this paper, we prove the uniqueness of 12-point three-distance sets in $mathbb{R}^3$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا