Do you want to publish a course? Click here

Unified Framework for Spectral Dimensionality Reduction, Maximum Variance Unfolding, and Kernel Learning By Semidefinite Programming: Tutorial and Survey

296   0   0.0 ( 0 )
 Added by Benyamin Ghojogh
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This is a tutorial and survey paper on unification of spectral dimensionality reduction methods, kernel learning by Semidefinite Programming (SDP), Maximum Variance Unfolding (MVU) or Semidefinite Embedding (SDE), and its variants. We first explain how the spectral dimensionality reduction methods can be unified as kernel Principal Component Analysis (PCA) with different kernels. This unification can be interpreted as eigenfunction learning or representation of kernel in terms of distance matrix. Then, since the spectral methods are unified as kernel PCA, we say let us learn the best kernel for unfolding the manifold of data to its maximum variance. We first briefly introduce kernel learning by SDP for the transduction task. Then, we explain MVU in detail. Vario



rate research

Read More

This is a tutorial and survey paper for nonlinear dimensionality and feature extraction methods which are based on the Laplacian of graph of data. We first introduce adjacency matrix, definition of Laplacian matrix, and the interpretation of Laplacian. Then, we cover the cuts of graph and spectral clustering which applies clustering in a subspace of data. Different optimization variants of Laplacian eigenmap and its out-of-sample extension are explained. Thereafter, we introduce the locality preserving projection and its kernel variant as linear special cases of Laplacian eigenmap. Versions of graph embedding are then explained which are generaliz
Existing dimensionality reduction methods are adept at revealing hidden underlying manifolds arising from high-dimensional data and thereby producing a low-dimensional representation. However, the smoothness of the manifolds produced by classic techniques over sparse and noisy data is not guaranteed. In fact, the embedding generated using such data may distort the geometry of the manifold and thereby produce an unfaithful embedding. Herein, we propose a framework for nonlinear dimensionality reduction that generates a manifold in terms of smooth geodesics that is designed to treat problems in which manifold measurements are either sparse or corrupted by noise. Our method generates a network structure for given high-dimensional data using a nearest neighbors search and then produces piecewise linear shortest paths that are defined as geodesics. Then, we fit points in each geodesic by a smoothing spline to emphasize the smoothness. The robustness of this approach for sparse and noisy datasets is demonstrated by the implementation of the method on synthetic and real-world datasets.
We present a general framework of semi-supervised dimensionality reduction for manifold learning which naturally generalizes existing supervised and unsupervised learning frameworks which apply the spectral decomposition. Algorithms derived under our framework are able to employ both labeled and unlabeled examples and are able to handle complex problems where data form separate clusters of manifolds. Our framework offers simple views, explains relationships among existing frameworks and provides further extensions which can improve existing algorithms. Furthermore, a new semi-supervised kernelization framework called ``KPCA trick is proposed to handle non-linear problems.
176 - Kevin M. Carter , Raviv Raich , 2008
This report concerns the problem of dimensionality reduction through information geometric methods on statistical manifolds. While there has been considerable work recently presented regarding dimensionality reduction for the purposes of learning tasks such as classification, clustering, and visualization, these methods have focused primarily on Riemannian manifolds in Euclidean space. While sufficient for many applications, there are many high-dimensional signals which have no straightforward and meaningful Euclidean representation. In these cases, signals may be more appropriately represented as a realization of some distribution lying on a statistical manifold, or a manifold of probability density functions (PDFs). We present a framework for dimensionality reduction that uses information geometry for both statistical manifold reconstruction as well as dimensionality reduction in the data domain.
Spectral dimensionality reduction methods enable linear separations of complex data with high-dimensional features in a reduced space. However, these methods do not always give the desired results due to irregularities or uncertainties of the data. Thus, we consider aggressively modifying the scales of the features to obtain the desired classification. Using prior knowledge on the labels of partial samples to specify the Fiedler vector, we formulate an eigenvalue problem of a linear matrix pencil whose eigenvector has the feature scaling factors. The resulting factors can modify the features of entire samples to form clusters in the reduced space, according to the known labels. In this study, we propose new dimensionality reduction methods supervised using the feature scaling associated with the spectral clustering. Numerical experiments show that the proposed methods outperform well-established supervised methods for toy problems with more samples than features, and are more robust regarding clustering than existing methods. Also, the proposed methods outperform existing methods regarding classification for real-world problems with more features than samples of gene expression profiles of cancer diseases. Furthermore, the feature scaling tends to improve the clustering and classification accuracies of existing unsupervised methods, as the proportion of training data increases.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا