Do you want to publish a course? Click here

Open-Set Representation Learning through Combinatorial Embedding

129   0   0.0 ( 0 )
 Added by Geeho Kim
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Visual recognition tasks are often limited to dealing with a small subset of classes simply because the labels for the remaining classes are unavailable. We are interested in identifying novel concepts in a dataset through representation learning based on the examples in both labeled and unlabeled classes, and extending the horizon of recognition to both known and novel classes. To address this challenging task, we propose a combinatorial learning approach, which naturally clusters the examples in unseen classes using the compositional knowledge given by multiple supervised meta-classifiers on heterogeneous label spaces. We also introduce a metric learning strategy to estimate pairwise pseudo-labels for improving representations of unlabeled examples, which preserves semantic relations across known and novel classes effectively. The proposed algorithm discovers novel concepts via a joint optimization of enhancing the discrimitiveness of unseen classes as well as learning the representations of known classes generalizable to novel ones. Our extensive experiments demonstrate remarkable performance gains by the proposed approach in multiple image retrieval and novel class discovery benchmarks.



rate research

Read More

155 - Zhen Fang , Jie Lu , Anjin Liu 2021
Traditional supervised learning aims to train a classifier in the closed-set world, where training and test samples share the same label space. In this paper, we target a more challenging and realistic setting: open-set learning (OSL), where there exist test samples from the classes that are unseen during training. Although researchers have designed many methods from the algorithmic perspectives, there are few methods that provide generalization guarantees on their ability to achieve consistent performance on different training samples drawn from the same distribution. Motivated by the transfer learning and probably approximate correct (PAC) theory, we make a bold attempt to study OSL by proving its generalization error-given training samples with size n, the estimation error will get close to order O_p(1/sqrt{n}). This is the first study to provide a generalization bound for OSL, which we do by theoretically investigating the risk of the target classifier on unknown classes. According to our theory, a novel algorithm, called auxiliary open-set risk (AOSR) is proposed to address the OSL problem. Experiments verify the efficacy of AOSR. The code is available at github.com/Anjin-Liu/Openset_Learning_AOSR.
Self-supervised representation learning has achieved remarkable success in recent years. By subverting the need for supervised labels, such approaches are able to utilize the numerous unlabeled images that exist on the Internet and in photographic datasets. Yet to build truly intelligent agents, we must construct representation learning algorithms that can learn not only from datasets but also learn from environments. An agent in a natural environment will not typically be fed curated data. Instead, it must explore its environment to acquire the data it will learn from. We propose a framework, curious representation learning (CRL), which jointly learns a reinforcement learning policy and a visual representation model. The policy is trained to maximize the error of the representation learner, and in doing so is incentivized to explore its environment. At the same time, the learned representation becomes stronger and stronger as the policy feeds it ever harder data to learn from. Our learned representations enable promising transfer to downstream navigation tasks, performing better than or comparably to ImageNet pretraining without using any supervision at all. In addition, despite being trained in simulation, our learned representations can obtain interpretable results on real images. Code is available at https://yilundu.github.io/crl/.
In audio-visual navigation, an agent intelligently travels through a complex, unmapped 3D environment using both sights and sounds to find a sound source (e.g., a phone ringing in another room). Existing models learn to act at a fixed granularity of agent motion and rely on simple recurrent aggregations of the audio observations. We introduce a reinforcement learning approach to audio-visual navigation with two key novel elements: 1) waypoints that are dynamically set and learned end-to-end within the navigation policy, and 2) an acoustic memory that provides a structured, spatially grounded record of what the agent has heard as it moves. Both new ideas capitalize on the synergy of audio and visual data for revealing the geometry of an unmapped space. We demonstrate our approach on two challenging datasets of real-world 3D scenes, Replica and Matterport3D. Our model improves the state of the art by a substantial margin, and our experiments reveal that learning the links between sights, sounds, and space is essential for audio-visual navigation. Project: http://vision.cs.utexas.edu/projects/audio_visual_waypoints.
We introduce the task of open-vocabulary visual instance search (OVIS). Given an arbitrary textual search query, Open-vocabulary Visual Instance Search (OVIS) aims to return a ranked list of visual instances, i.e., image patches, that satisfies the search intent from an image database. The term open vocabulary means that there are neither restrictions to the visual instance to be searched nor restrictions to the word that can be used to compose the textual search query. We propose to address such a search challenge via visual-semantic aligned representation learning (ViSA). ViSA leverages massive image-caption pairs as weak image-level (not instance-level) supervision to learn a rich cross-modal semantic space where the representations of visual instances (not images) and those of textual queries are aligned, thus allowing us to measure the similarities between any visual instance and an arbitrary textual query. To evaluate the performance of ViSA, we build two datasets named OVIS40 and OVIS1600 and also introduce a pipeline for error analysis. Through extensive experiments on the two datasets, we demonstrate ViSAs ability to search for visual instances in images not available during training given a wide range of textual queries including those composed of uncommon words. Experimental results show that ViSA achieves an mAP@50 of 21.9% on OVIS40 under the most challenging setting and achieves an mAP@6 of 14.9% on OVIS1600 dataset.
Self-supervised learning (especially contrastive learning) has attracted great interest due to its tremendous potentials in learning discriminative representations in an unsupervised manner. Despite the acknowledged successes, existing contrastive learning methods suffer from very low learning efficiency, e.g., taking about ten times more training epochs than supervised learning for comparable recognition accuracy. In this paper, we discover two contradictory phenomena in contrastive learning that we call under-clustering and over-clustering problems, which are major obstacles to learning efficiency. Under-clustering means that the model cannot efficiently learn to discover the dissimilarity between inter-class samples when the negative sample pairs for contrastive learning are insufficient to differentiate all the actual object categories. Over-clustering implies that the model cannot efficiently learn the feature representation from excessive negative sample pairs, which enforces the model to over-cluster samples of the same actual categories into different clusters. To simultaneously overcome these two problems, we propose a novel self-supervised learning framework using a median triplet loss. Precisely, we employ a triplet loss tending to maximize the relative distance between the positive pair and negative pairs to address the under-clustering problem; and we construct the negative pair by selecting the negative sample of a median similarity score from all negative samples to avoid the over-clustering problem, guaranteed by the Bernoulli Distribution model. We extensively evaluate our proposed framework in several large-scale benchmarks (e.g., ImageNet, SYSU-30k, and COCO). The results demonstrate the superior performance (e.g., the learning efficiency) of our model over the latest state-of-the-art methods by a clear margin. Codes available at: https://github.com/wanggrun/triplet.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا