No Arabic abstract
Two-dimensional hexagonal boron nitride (hBN) that hosts bright room-temperature single-photon emitters (SPEs) is a promising material platform for quantum information applications. An important step towards the practical application of hBN is the on-demand, position-controlled generation of SPEs. Several strategies have been reported to achieve the deterministic creation of hBN SPEs. However, they either rely on a substrate nanopatterning procedure that is not compatible with integrated photonic devices or utilize a radiation source that might cause unpredictable damage to hBN and underlying substrates. Here, we report a radiation- and lithography-free route to deterministically activate hBN SPEs by nanoindentation with an atomic force microscope (AFM) tip. The method is applied to thin hBN flakes (less than 25 nm in thickness) on flat silicon-dioxide-silicon substrates that can be readily integrated into on-chip photonic devices. The achieved SPEs yields are above 30% by utilizing multiple indent sizes, and a maximum yield of 36% is demonstrated for the indent size of around 400 nm. Our results mark an important step towards the deterministic creation and integration of hBN SPEs with photonic and plasmonic on-chip devices.
Assembly of quantum nanophotonic systems with plasmonic resonators are important for fundamental studies of single photon sources as well as for on-chip information processing. In this work, we demonstrate controllable nanoassembly of gold nanospheres with ultra-bright quantum emitters in 2D layered hexagonal boron nitride (hBN). We utilize an atomic force microscope (AFM) tip to precisely position gold nanospheres to close proximity of the quantum emitters and observe the resulting emission enhancement and fluorescence lifetime reduction. A fluorescence enhancement of over 300% is achieved experimentally for quantum emitters in hBN, with a radiative quantum efficiency of up to 40% and a saturated count rate in excess of 5 million counts/s. Our results are promising for future employment of quantum emitters in hBN for integrated nanophotonic devices and plasmonic based nanosensors.
Resonant excitation of solid-state quantum emitters enables coherent control of quantum states and generation of coherent single photons, which are required for scalable quantum photonics applications. However, these systems can often decay to one or more intermediate dark states or spectrally jump, resulting in the lack of photons on resonance. Here, we present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN). Utilizing a two-laser repumping scheme, we achieve optically stable resonance fluorescence of hBN emitters and an overall increase of ON time by an order of magnitude compared to only resonant excitation. Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
Two-photon absorption is an important non-linear process employed for high resolution bio-imaging and non-linear optics. In this work we realize two-photon excitation of a quantum emitter embedded in a two-dimensional material. We examine defects in hexagonal boron nitride and show that the emitters exhibit similar spectral and quantum properties under one-photon and two-photon excitation. Furthermore, our findings are important to deploy two-dimensional hexagonal boron nitride for quantum non-linear photonic applications.
Hexagonal boron nitride (h-BN), a prevalent insulating crystal for dielectric and encapsulation layers in two-dimensional (2D) nanoelectronics and a structural material in 2D nanoelectromechanical systems (NEMS), has also rapidly emerged as a promising platform for quantum photonics with the recent discovery of optically active defect centers and associated spin states. Combined with measured emission characteristics, here we propose and numerically investigate the cavity quantum electrodynamics (cavity-QED) scheme incorporating these defect-enabled single photon emitters (SPEs) in h-BN microdisk resonators. The whispering-gallery nature of microdisks can support multiple families of cavity resonances with different radial and azimuthal mode indices simultaneously, overcoming the challenges in coinciding a single point defect with the maximum electric field of an optical mode both spatially and spectrally. The excellent characteristics of h-BN SPEs, including exceptional emission rate, considerably high Debye-Waller factor, and Fourier transform limited linewidth at room temperature, render strong coupling with the ratio of coupling to decay rates g/max({gamma},k{appa}) predicated as high as 500. This study not only provides insight into the emitter-cavity interaction, but also contributes toward realizing h-BN photonic components, such as low-threshold microcavity lasers and high-purity single photon sources, critical for linear optics quantum computing and quantum networking applications.
Quantum emitters in hexagonal boron nitride (hBN) are promising building blocks for the realization of integrated quantum photonic systems. However, their spectral inhomogeneity currently limits their potential applications. Here, we apply tensile strain to quantum emitters embedded in few-layer hBN films and realize both red and blue spectral shifts with tuning magnitudes up to 65 meV, a record for any two-dimensional quantum source. We demonstrate reversible tuning of the emission and related photophysical properties. We also observe rotation of the optical dipole in response to strain, suggesting the presence of a second excited state. We derive a theoretical model to describe strain-based tuning in hBN, and the rotation of the optical dipole. Our work demonstrates the immense potential for strain tuning of quantum emitters in layered materials to enable their employment in scalable quantum photonic networks.