No Arabic abstract
Mapping the orbital obliquity distribution of young planets is one avenue towards understanding mechanisms that sculpt the architectures of planetary systems. TOI-942 is a young field star, with an age of ~60 Myr, hosting a planetary system consisting of two transiting Neptune-sized planets in 4.3- and 10.1-day period orbits. We observed the spectroscopic transits of the inner Neptune TOI-942b to determine its projected orbital obliquity angle. Through two partial transits, we find the planet to be in a prograde orbit, with a projected obliquity angle of |lambda| = 1/+41-33 deg. In addition, incorporating the light curve and the stellar rotation period, we find the true three-dimensional obliquity to be 2/+27-23 deg. We explored various sources of uncertainties specific to the spectroscopic transits of planets around young active stars, and showed that our reported obliquity uncertainty fully encompassed these effects. TOI-942b is one of the youngest planets to have its obliquity characterized, and one of even fewer residing in a multi-planet system. The prograde orbital geometry of TOI-942b is in line with systems of similar ages, none of which have yet been identified to be in strongly misaligned orbits.
DS Tuc Ab is a Neptune-sized planet that orbits around a member of the 45 Myr old Tucana-Horologium moving group. Here, we report the measurement of the sky-projected angle between the stellar spin axis and the planets orbital axis, based on the observation of the Rossiter-McLaughlin effect during three separate planetary transits. The orbit appears to be well aligned with the equator of the host star, with a projected obliquity of lambda = 2.5 +1.0/-0.9 deg. In addition to the distortions in the stellar absorption lines due to the transiting planet, we observed variations that we attribute to large starspots, with angular sizes of tens of degrees. The technique we have developed for simultaneous modeling of starspots and the planet-induced distortions may be useful in other observations of planets around active stars.
We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V=9.9) G9 dwarf star in a visual binary system observed by the TESS space mission in Sectors 5 and 6. We performed ground-based follow-up observations -- comprised of LCOGT transit photometry, NIRC2 adaptive optics imaging, and FIES, CORALIE, HARPS, HIRES, and PFS high-precision Doppler measurements -- and confirmed the planetary nature of the 16-day transiting candidate announced by the TESS team. We discovered an additional radial velocity signal with a period of 5 days induced by the presence of a second planet in the system, which we also found to transit its host star. We found that the inner mini-Neptune, TOI-421b, has an orbital period of Pb =5.19672 +- 0.00049 days, a mass of Mb = 7.17 +- 0.66 Mearth and a radius of Rb = 2.68+0.19-0.18 Rearth, whereas the outer warm Neptune, TOI-421 c, has a period of Pc =16.06819 +- 0.00035 days, a mass of Mc = 16.42+1.06-1.04 Mearth, a radius of Rc = 5.09+0.16-0.15 Rearth and a density of rho_c =0.685+0.080-0.072 g cm-3 . With its characteristics the inner planet (rho_b=2.05+0.52-0.41 g cm-3) is placed in the intriguing class of the super-puffy mini-Neptunes. TOI-421b and TOI-421c are found to be well suitable for atmospheric characterization. Our atmospheric simulations predict significant Ly-alpha transit absorption, due to strong hydrogen escape in both planets, and the presence of detectable CH_4 in the atmosphere of TOI-421c if equilibrium chemistry is assumed.
Large sub-Neptunes are uncommon around the coolest stars in the Galaxy and are rarer still around those that are metal-poor. However, owing to the large planet-to-star radius ratio, these planets are highly suitable for atmospheric study via transmission spectroscopy in the infrared, such as with JWST. Here we report the discovery and validation of a sub-Neptune orbiting the thick-disk, mid-M dwarf star TOI-2406. We first infer properties of the host star by analysing the stars near-infrared spectrum, spectral energy distribution, and Gaia parallax. We use multi-band photometry to confirm that the transit event is on-target and achromatic, and we statistically validate the TESS signal as a transiting exoplanet. We then determine physical properties of the planet through global transit modelling of the TESS and ground-based time-series data. We determine the host to be a metal-poor M4V star, located at a distance of 56 pc, with a sub-solar metallicity $(mathrm{[Fe/H] = -0.38 pm 0.07})$, and a member of the thick disk. The planet is a relatively large sub-Neptune for the M-dwarf planet population, with $mathrm{R_p = 2.94 pm 0.17} mathrm{R_oplus}$ and $mathrm{P = 3.077}$ d, producing transits of 2% depth. We note the orbit has a non-zero eccentricity to 3$mathrm{sigma}$, prompting questions about the dynamical history of the system. This system is an interesting outcome of planet formation and presents a benchmark for large-planet formation around metal-poor, low-mass stars. The system warrants further study, in particular radial velocity follow-up to determine the planet mass and constrain possible bound companions. Furthermore, TOI-2406 b is a good target for future atmospheric study through transmission spectroscopy, particularly in the category of warm sub-Neptunes.
We present the confirmation of a new sub-Neptune close to the transition between super-Earths and sub-Neptunes transiting the M2 dwarf TOI- 269 (TIC 220479565, V = 14.4 mag, J = 10.9 mag, Rstar = 0.40 Rsun, Mstar = 0.39 Msun, d = 57 pc). The exoplanet candidate has been identified in multiple TESS sectors, and validated with high-precision spectroscopy from HARPS and ground-based photometric follow-up from ExTrA and LCO-CTIO. We determined mass, radius, and bulk density of the exoplanet by jointly modeling both photometry and radial velocities with juliet. The transiting exoplanet has an orbital period of P = 3.6977104 +- 0.0000037 days, a radius of 2.77 +- 0.12 Rearth, and a mass of 8.8 +- 1.4 Mearth. Since TOI-269 b lies among the best targets of its category for atmospheric characterization, it would be interesting to probe the atmosphere of this exoplanet with transmission spectroscopy in order to compare it to other sub-Neptunes. With an eccentricity e = 0.425+0.082-0.086, TOI-269 b has one of the highest eccentricities of the exoplanets with periods less than 10 days. The star being likely a few Gyr old, this system does not appear to be dynamically young. We surmise TOI-269 b may have acquired its high eccentricity as it migrated inward through planet-planet interactions.
Theories of the formation and early evolution of planetary systems postulate that planets are born in circumstellar disks, and undergo radial migration during and after dissipation of the dust and gas disk from which they formed. The precise ages of meteorites indicate that planetesimals - the building blocks of planets - are produced within the first million years of a stars life. A prominent question is: how early can one find fully formed planets like those frequently detected on short orbital periods around mature stars? Some theories suggest the in situ formation of planets close to their host stars is unlikely and the existence of such planets is evidence for large scale migration. Other theories posit that planet assembly at small orbital separations may be common. Here we report on a newly-born, transiting planet orbiting its star every 5.4 days. The planet is 50 per cent larger than Neptune, and its mass is less than 3.6 times Jupiter (at 99.7 per cent confidence), with a true mass likely to be within a factor of several of Neptunes. The 5-10 million year old star has a tenuous dust disk extending outwards from about 2 times the Earth-Sun separation, in addition to the large planet located at less than one-twentieth the Earth-Sun separation.