It has been proposed that an extended version of the Hubbard model which potentially hosts rich possibilities of correlated physics may be well simulated by the transition metal dichalcogenide (TMD) moir{e} heterostructures. Motivated by recent reports of continuous metal insulator transition (MIT) at half filling, as well as correlated insulators at various fractional fillings in TMD moir{e} heterostructures, we propose a theory for the potentially continuous MIT with fractionalized electric charges. The charge fractionalization at the MIT will lead to experimental observable effects, such as a large universal resistivity jump and interaction driven bad metal at the MIT, as well as special scaling of the quasi-particle weight with the tuning parameter. These predictions are different from previously proposed theory for continuous MIT.