Do you want to publish a course? Click here

Neutrino-electron magnetohydrodynamics in an expanding Universe

117   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English
 Authors L. M. Perrone




Ask ChatGPT about the research

We derive a new model for neutrino-plasma interactions in an expanding universe that incorporates the collective effects of the neutrinos on the plasma constituents. We start from the kinetic description of a multi-species plasma in the flat Friedmann-Robertson-Walker metric, where the particles are coupled to neutrinos through the charged- and neutral-current forms of the weak interaction. We then derive the fluid equations and specialize our model to (a) the lepton epoch, where we consider a pair electron-positron plasma interacting with electron (anti-)neutrinos, and (b) after the electron-positron annihilation, where we model an electron-proton plasma and take the limit of slow ions and inertia-less electrons to obtain a set of neutrino-electron magnetohydrodynamics (NEMHD) equations. In both models, the dynamics of the plasma is affected by the neutrino motion through a ponderomotive force and, as a result, new terms appear in the induction equation that can act as a source for magnetic field generation in the early universe. A brief discussion on the possible applications of our model is proposed.



rate research

Read More

Does space stretch its contents as the universe expands? Usually we say the answer is no - the stretching of space is not like the stretching of a rubber sheet that might drag things with it. In this paper we explore a potential counter example - namely we show that is is impossible to make an arbitrarily long object in an expanding universe, because it is impossible to hold the distant end of the object stationary with respect to us (as defined in the Friedmann-Lemaitre-Robertson-Walker metric). We show that this does not mean that expanding space has a force associated with it, rather, some fictitious forces arise due to our choice of reference frame. By choosing our usual time-slice (where all comoving observers agree on the age of the universe), we choose a global frame that does not correspond to the frame of any inertial observer. As a result, simple relativistic velocity transforms generate an apparent acceleration, even where no force exists. This effect is similar to the fictitious forces that arise in describing objects in rotating reference frames, as in the case of the Coriolis effect.
In this article we investigate the effects of single derivative mixing in massive bosonic fields. In the regime of large mixing, we show that this leads to striking changes of the field dynamics, delaying the onset of classical oscillations and decreasing, or even eliminating, the friction due to Hubble expansion. We highlight this phenomenon with a few examples. In the first example, we show how an axion like particle can have its number abundance parametrically enhanced. In the second example, we demonstrate that the QCD axion can have its number abundance enhanced allowing for misalignment driven axion dark matter all the way down to $f_a$ of order astrophysical bounds. In the third example, we show that the delayed oscillation of the scalar field can also sustain a period of inflation. In the last example, we present a situation where an oscillating scalar field is completely frictionless and does not dilute away in time.
112 - F. Finelli , A. Gruppuso 1999
We extend our analysis for scalar fields in a Robertson-Walker metric to the electromagnetic field and Dirac fields by the method of invariants. The issue of the relation between conformal properties and particle production is re-examined and it is verified that the electromagnetic and massless spinor actions are conformal invariant, while the massless conformally coupled scalar field is not. For the scalar field case it is pointed out that the violation of conformal simmetry due to surface terms, although ininfluential for the equation of motion, does lead to effects in the quantized theory.
We study the tensorial modes of the two-fluid model, where one of this fluids has an equation of state $p = - rho/3$ (variable cosmological constant, cosmic string fluid, texture) or $p = - rho$ (cosmological constant), while the other fluid is an ordinary matter (radiation, stiff matter, incoherent matter). In the first case, it is possible to have a closed Universe whose dynamics can be that of an open Universe providing alternative solutions for the age and horizon problems. This study of the gravitational waves is extended for all values of the effective curvature $k_{eff}=k-frac{8pi G}{3}rho_{0s}$, that is, positive, negative or zero, $k$ being the curvature of the spacelike section. In the second case, we restrict ourselves to a flat spatial section. The behaviour of gravitational waves have, in each case, very particular features, that can be reflected in the anisotropy spectrum of Cosmic Microwave Background Radiation. We make also some considerations of these models as candidate to dark matter models.
A massive, nonrelativistic scalar field in an expanding spacetime is usually approximated by a pressureless perfect fluid, which leads to the standard conclusion that such a field can play the role of cold dark matter. In this paper, we systematically study these approximations, incorporating subleading corrections. We provide two equivalent effective descriptions of the system, each of which offers its own advantages and insights: (i) A nonrelativistic effective field theory (EFT) with which we show that the relativistic corrections induce an effective self-interaction for the nonrelativistic field. As a byproduct, our EFT also allows one to construct the exact solution, including oscillatory behavior, which is often difficult to achieve from the exact equations. (ii) An effective (imperfect) fluid description, with which we demonstrate that, for a perturbed Friedmann-Lema^{i}tre-Robertson-Walker (FLRW) universe: (a) The pressure is small but nonzero (and positive), even for a free theory with no tree-level self-interactions. (b) The sound speed of small fluctuations is also nonzero (and positive), reproducing already known leading-order results, correcting a subdominant term, and identifying a new contribution that had been omitted in previous analyses. (c) The fluctuations experience a negative effective bulk viscosity. The positive sound speed and the negative bulk viscosity act in favor of and against the growth of overdensities, respectively. The net effect may be considered a smoking gun for ultra-light dark matter.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا