Do you want to publish a course? Click here

Transmission spectroscopy with VLT FORS2: a featureless spectrum for the low-density transiting exoplanet WASP-88b

249   0   0.0 ( 0 )
 Added by Petros Spyratos
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present ground-based optical transmission spectroscopy of the low-density hot Jupiter WASP-88b covering the wavelength range 4413-8333 {AA} with the FORS2 spectrograph on the Very Large Telescope. The FORS2 white light curves exhibit a significant time-correlated noise which we model using a Gaussian Process and remove as a wavelength-independent component from the spectroscopic light curves. We analyse complementary photometric observations from the Transiting Exoplanet Survey Satellite and refine the system properties and ephemeris. We find a featureless transmission spectrum with increased absorption towards shorter wavelengths. We perform an atmospheric retrieval analysis with the AURA code, finding tentative evidence for haze in the upper atmospheric layers and a lower likelihood for a dense cloud deck. Whilst our retrieval analysis results point toward clouds and hazes, further evidence is needed to definitively reject a clear-sky scenario.



rate research

Read More

242 - E. Sedaghati 2015
In the past few years, the study of exoplanets has evolved from being pure discovery, then being more exploratory in nature and finally becoming very quantitative. In particular, transmission spectroscopy now allows the study of exoplanetary atmospheres. Such studies rely heavily on space-based or large ground-based facilities, because one needs to perform time-resolved, high signal-to-noise spectroscopy. The very recent exchange of the prisms of the FORS2 atmospheric diffraction corrector on ESOs Very Large Telescope should allow us to reach higher data quality than was ever possible before. With FORS2, we have obtained the first optical ground-based transmission spectrum of WASP-19b, with 20 nm resolution in the 550--830 nm range. For this planet, the data set represents the highest resolution transmission spectrum obtained to date. We detect large deviations from planetary atmospheric models in the transmission spectrum redwards of 790 nm, indicating either additional sources of opacity not included in the current atmospheric models for WASP-19b or additional, unexplored sources of systematics. Nonetheless, this work shows the new potential of FORS2 for studying the atmospheres of exoplanets in greater detail than has been possible so far.
87 - J. Wilson 2020
We report ground-based transmission spectroscopy of the highly irradiated and ultra-short period hot-Jupiter WASP-103b covering the wavelength range $approx$ 400-600 nm using the FORS2 instrument on the Very Large Telescope. The light curves show significant time-correlated noise which is mainly invariant in wavelength and which we model using a Gaussian process. The precision of our transmission spectrum is improved by applying a common-mode correction derived from the white light curve, reaching typical uncertainties in transit depth of $approx$ 2x10$^{-4}$ in wavelength bins of 15 nm. After correction for flux contamination from a blended companion star, our observations reveal a featureless spectrum across the full range of the FORS2 observations and we are unable to confirm the Na absorption previously inferred using Gemini/GMOS or the strong Rayleigh scattering observed using broad-band light curves. We performed a Bayesian atmospheric retrieval on the full optical-infrared transmission spectrum using the additional data from Gemini/GMOS, HST/WFC3 and Spitzer observations and recover evidence for H$_2$O absorption at the 4.0$sigma$ level. However, our observations are not able to completely rule out the presence of Na, which is found at 2.0$sigma$ in our retrievals. This may in part be explained by patchy/inhomogeneous clouds or hazes damping any absorption features in our FORS2 spectrum, but an inherently small scale height also makes this feature challenging to probe from the ground. Our results nonetheless demonstrate the continuing potential of ground-based observations for investigating exoplanet atmospheres and emphasise the need for the application of consistent and robust statistical techniques to low-resolution spectra in the presence of instrumental systematics.
We report the discovery of a low-density exoplanet transiting an 11th magnitude star in the Southern hemisphere. WASP-15b, which orbits its host star with a period P=3.7520656+-0.0000028d has a mass M_p=0.542+-0.050M_J and radius R_p=1.428+-0.077R_J, and is therefore the one of least dense transiting exoplanets so far discovered (rho_p=0.247+-0.035g cm^-3). An analysis of the spectrum of the host star shows it to be of spectral type around F5, with an effective temperature T_eff=6300+-100K and [Fe/H]=-0.17+-0.11.
81 - M. Lendl , L. Delrez , M. Gillon 2015
Context: Transmission spectroscopy has proven to be a useful tool for the study of exoplanet atmospheres, and has lead to the detection of a small number of elements and molecules (Na, K, H$_2$O), but also revealed that many planets show flat transmission spectra consistent with the presence of opaque high-altitude hazes or clouds. Aims: We apply this technique to the $M_P=0.38 M_{jup}$, $R_p=1.12 R_{jup}$, $P=2.78d$ planet WASP-49b, aiming to characterize its transmission spectrum between 0.73 and 1 $mathrm{mu}$m and search for the features of K and H$_2$O. Methods: Three transits of WASP-49b have been observed with the FORS2 instrument installed at the VLT/UT1 telescope at the ESO Paranal site. We used FORS2 in MXU mode with grism GRIS_600z, producing simultaneous multiwavelength transit lightcurves throughout the i and z bands. We combined these data with independent broadband photometry from the Euler and TRAPPIST telescopes to obtain a good measurement of the transit shape. Strong correlated noise structures are present in the FORS2 lightcurves, which are due to rotating flat-field structures that are introduced by inhomogeneities of the linear atmospheric dispersion correctors transparency. We accounted for these structures by constructing common noise models from the residuals of lightcurves bearing the same noise structures, and used them together with simple parametric models to infer the transmission spectrum. Results: We present three independent transmission spectra of WASP-49b between 0.73 and 1.02 $mu m$, as well as a transmission spectrum between 0.65 and 1.02 $mu m$ from the combined analysis of FORS2 and broadband data. The results obtained from the three individual epochs agree well. The transmission spectrum of WASP-49b is best fit by atmospheric models containing a cloud deck at pressure levels of 1 mbar or lower.
GJ 436b is a warm-- approximately 800 K--extrasolar planet that periodically eclipses its low-mass (half the mass of the Sun) host star, and is one of the few Neptune-mass planets that is amenable to detailed characterization. Previous observations have indicated that its atmosphere has a methane-to-CO ratio that is 100,000 times smaller than predicted by models for hydrogen-dominated atmospheres at these temperatures. A recent study proposed that this unusual chemistry could be explained if the planets atmosphere is significantly enhanced in elements heavier than H and He. In this study we present complementary observations of GJ 436bs atmosphere obtained during transit. Our observations indicate that the planets transmission spectrum is effectively featureless, ruling out cloud-free, hydrogen-dominated atmosphere models with an extremely high significance of 48 sigma. The measured spectrum is consistent with either a high cloud or haze layer located at a pressure of approximately 1 mbar or with a relatively hydrogen-poor (three percent hydrogen and helium mass fraction) atmospheric composition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا