Using the gauge/string duality, we model a heavy quark-antiquark pair in a color singlet state moving through a cold medium and explore the consequences of temperature and velocity on string breaking. We show that the string breaking distance slowly varies with temperature and velocity away from the critical line but could fall near it.
We use gauge/string duality to model a heavy quark-antiquark pair in a color singlet moving through a thermal plasma. In particular, we explore the effect of velocity on the string tension and Debye screening mass. Then we apply the results to the analysis of heavy quarkonium bound states. With some assumptions, we estimate the characteristic size of quarkonium and its dissociation temperature.
We consider the string breaking phenomenon within effective string models which purport to mimic QCD with two light flavors, with a special attention to baryon modes. We make some estimates of the string breaking distances at zero and non-zero baryon chemical potentials. Our estimates point towards the enhancement of baryon production in strong decays of heavy mesons in dense baryonic matter. We also suggest that the enhanced production of $Lambda_c^+$ baryons in PbPb collisions is mainly due to larger values of chemical potential.
The string breaking phenomenon in QCD can be studied using the gauge/string duality. In this approach, one can make estimates of some of the string breaking distances at non-zero temperature and baryon chemical potential. These point towards the enhancement of baryon production in strong decays of heavy mesons in dense baryonic medium.
Making use of the gauge/string duality, it is possible to study some aspects of the string breaking phenomenon in the three quark system. Our results point out that the string breaking distance is not universal and depends on quark geometry. The estimates of the ratio of the string breaking distance in the three quark system to that in the quark-antiquark system would range approximately from $frac{2}{3}$ to $1$. In addition, it is shown that there are special geometries which allow more than one breaking distance.
These lecture notes review the topological string theory and its applications to mathematics and physics. They expand on material presented at the Takagi Lectures of the Mathematical Society of Japan on 21 June 2008 at Department of Mathematics, Kyoto University.