Do you want to publish a course? Click here

The eROSITA Final Equatorial-Depth Survey (eFEDS): LOFAR view of brightest cluster galaxies and AGN feedback

393   0   0.0 ( 0 )
 Added by Thomas Pasini
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

During the performance verification phase of the SRG/eROSITA telescope, the eROSITA Final Equatorial-Depth Survey (eFEDS) has been carried out. It covers a 140 deg$^2$ field located at 126$^circ <$ R.A. $< 146^circ$ and -3$^circ <$ Dec. $< +6^circ$ with a nominal exposure over the field of 2.2 ks. 542 candidate clusters were detected in this field, down to a flux limit $F_X sim 10^{-14}$ erg s$^{-1}$ cm$^{-2}$ in the 0.5-2 keV band. In order to understand radio-mode feedback in galaxy clusters, we study the radio emission of brightest cluster galaxies of eFEDS clusters, and we relate it to the X-ray properties of the host cluster. Using LOFAR we identify 227 radio galaxies hosted in the BCGs of the 542 galaxy clusters and groups detected in eFEDS. We treat non-detections as radio upper limits. We analyse the properties of radio galaxies, such as redshift and luminosity distribution, offset from the cluster centre, largest linear size and radio power. We study their relation to the intracluster medium of the host cluster. We perform statistical tests to deal with upper limits on the radio luminosities. BCGs with radio-loud AGN are more likely to lie close to the cluster centre than radio-quiet BCGs. There is a clear relation between the clusters X-ray luminosity and the radio power of the BCG. Statistical tests indicate that this correlation is not produced by selection effects in the radio band. We see no apparent link between largest linear size of the radio galaxy and central density of the host cluster. Converting the radio luminosity to kinetic luminosity, we find that radiative losses of the intracluster medium are in an overall balance with the heating provided by the central AGN. Finally, we tentatively classify our objects into disturbed and relaxed, and we show that the link between the AGN and the ICM apparently holds regardless of the dynamical state of the cluster.



rate research

Read More

151 - M. Brusa , T. Urrutia , Y. Toba 2021
Theoretical models of galaxy-AGN co-evolution ascribe an important role for the feedback process to a short, luminous, obscured, and dust-enshrouded phase during which the accretion rate of the SMBH is expected to be at its maximum and the associated AGN-driven winds are also predicted to be maximally developed. To test this scenario, we have isolated a text-book candidate from the eROSITA Final Equatorial-Depth Survey (eFEDS) obtained within the Performance and Verification program of the eROSITA telescope on board Spectrum Roentgen Gamma. From an initial catalog of 246 hard X-ray selected sources matched with the photometric and spectroscopic information available within the eROSITA and Hyper Suprime-Cam consortia, three candidates Quasars in the feedback phase have been isolated applying the diagnostic proposed in Brusa et al. (2015). Only one source (eFEDSU J091157.5+014327) has a spectrum already available (from SDSS-DR16, z=0.603) and it unambiguously shows the presence of a broad component (FWHM~1650 km/s) in the [OIII]5007 line. The associated observed L_[OIII] is ~2.6x10^{42} erg/s, one to two orders of magnitude larger than that observed in local Seyferts and comparable to those observed in a sample of z~0.5 Type 1 Quasars. From the multiwavelength data available we derive an Eddington Ratio (L_bol/L_Edd) of ~0.25, and a bolometric correction in the hard X-ray of k_bol~10, lower than those observed for objects at similar bolometric luminosity. The presence of an outflow, the high X-ray luminosity and moderate X-ray obscuration (L_X~10^44.8 erg/s, N_H~2.7x10^22 cm^-2) and the red optical color, all match the prediction of quasars in the feedback phase from merger driven models. Forecasting to the full eROSITA all-sky survey with its spectroscopic follow-up, we predict that by the end of 2024 we will have a sample of few hundreds such objects at z=0.5-2.
108 - H. Brunner , T. Liu , G. Lamer 2021
Context. The eROSITA X-ray telescope onboard the Spectrum-Roentgen-Gamma (SRG) observatory combines a large field of view and collecting area in the energy range $sim$0.2 to $sim$8.0 keV with the capability to perform uniform scanning observations of large sky areas. Aims. SRG/eROSITA performed scanning observations of the $sim$140 square degrees eROSITA Final Equatorial Depth Survey (eFEDS) field as part of its performance verification phase. The observing time was chosen to slightly exceed the depth of equatorial fields after the completion of the eROSITA all-sky survey. We present a catalog of detected X-ray sources in the eFEDS field providing source positions and extent information, as well as fluxes in multiple energy bands and document a suite of tools and procedures developed for eROSITA data processing and analysis, validated and optimized by the eFEDS work. Methods. A multi-stage source detection procedure was optimized and calibrated by performing realistic simulations of the eROSITA eFEDS observations. We cross-matched the eROSITA eFEDS source catalog with previous XMM-ATLAS observations, confirming excellent agreement of the eROSITA and XMM-ATLAS source fluxes. Result. We present a primary catalog of 27910 X-ray sources, including 542 with significant spatial extent, detected in the 0.2-2.3 keV energy range with detection likelihoods $ge 6$, corresponding to a point source flux limit of $approx 7 times 10^{-15}$ erg/cm$^2$/s in the 0.5-2.0 keV energy band. A supplementary catalog contains 4774 low-significance source candidates with detection likelihoods between 5 and 6. In addition, a hard band sample of 246 sources detected in the energy range 2.3-5.0 keV above a detection likelihood of 10 is provided. A description of the dedicated data analysis software, calibration database and standard calibrated data products is provided in appendix.
152 - A. Liu , E. Bulbul , V. Ghirardini 2021
The eROSITA Final Equatorial-Depth Survey has been carried out during the PV phase of the SRG/eROSITA telescope and completed in November 2019. This survey is designed to provide the first eROSITA-selected sample of galaxy clusters and groups and to test the predictions for the all-sky survey in the context of cosmological studies with clusters. In the 140 deg$^2$ area covered by eFEDS, 542 candidate clusters and groups are detected as extended X-ray sources, down to a flux of $sim10^{-14} $erg/s/cm$^2$ in the soft band (0.5-2 keV) within 1. In this work, we provide the catalog of candidate galaxy clusters and groups in eFEDS. We perform imaging and spectral analysis on the eFEDS clusters with eROSITA X-ray data, and study the properties of the sample. The clusters are distributed in the redshift range [0.01, 1.3], with the median redshift at 0.35. We obtain the ICM temperature measurement with $>2sigma$ c.l. for $sim$1/5 (102/542) of the sample. The average temperature of these clusters is $sim$2 keV. Radial profiles of flux, luminosity, electron density, and gas mass are measured from the precise modeling of the imaging data. The selection function, the purity and completeness of the catalog are examined and discussed in detail. The contamination fraction is $sim1/5$ in this sample, dominated by misidentified point sources. The X-ray Luminosity Function of the clusters agrees well with the results obtained from other recent X-ray surveys. We also find 19 supercluster candidates in eFEDS, most of which are located at redshifts between 0.1 and 0.5. The eFEDS cluster and group catalog provides a benchmark proof-of-concept for the eROSITA All-Sky Survey extended source detection and characterization. We confirm the excellent performance of eROSITA for cluster science and expect no significant deviations from our pre-launch expectations for the final All-Sky Survey.
We investigate the physical properties--such as the stellar mass, SFR, IR luminosity, X-ray luminosity, and hydrogen column density--of MIR galaxies and AGN at $z < 4$ in the 140 deg$^2$ field observed by SRG/eROSITA through the eFEDS survey. By cross-matching the WISE 22 $mu$m (W4)-detected sample and the eFEDS X-ray point-source catalog, we find that 692 extragalactic objects are detected by eROSITA. We have compiled a multiwavelength dataset. We have also performed (i) an X-ray spectral analysis, (ii) SED fitting using X-CIGALE, (iii) 2D image-decomposition analysis using Subaru HSC images, and (iv) optical spectral fitting with QSFit to investigate the AGN and host-galaxy properties. For 7,088 WISE W4 objects that are undetected by eROSITA, we have performed an X-ray stacking analysis to examine the typical physical properties of these X-ray faint and/or probably obscured objects. We find that (i) 82% of the eFEDS-W4 sources are classified as X-ray AGN with $log,L_{rm X} >$ 42 erg s$^{-1}$; (ii) 67% and 24% of the objects have $log,(L_{rm IR}/L_{odot}) > 12$ and 13, respectively; (iii) the relationship between $L_{rm X}$ and the 6 $mu$m luminosity is consistent with that reported in previous works; and (iv) the relationship between the Eddington ratio and $N_{rm H}$ for the eFEDS-W4 sample and a comparison with a model prediction from a galaxy-merger simulation indicates that approximately 5% of the eFEDS-W4 sources in our sample are likely to be in an AGN-feedback phase, in which strong radiation pressure from the AGN blows out the surrounding material from the nuclear region. Thanks to the wide area coverage of eFEDS, we have been able to constrain the ranges of the physical properties of the WISE W4 sample of AGNs at $z < 4$, providing a benchmark for forthcoming studies on a complete census of MIR galaxies selected from the full-depth eROSITA all-sky survey.
280 - M. Klein , M. Oguri , J.J. Mohr 2021
The eROSITA Final Equatorial-Depth Survey (eFEDS), covering ~140 square degrees, was performed as part of the performance verification phase of the eROSITA telescope on board of the Russian-German satellite Spectrum-Roentgen-Gamma (SRG). In this paper we present the optical follow-up of 542 X-ray extent selected galaxy group and cluster candidates providing redshifts and cluster confirmation for the full sample. We use optical imaging data from the Hyper Suprime-Cam Subaru Strategic Program and from the Legacy Survey to run the cluster redshift and confirmation tool MCMF as well as the optical cluster finder CAMIRA at the location of the X-ray candidates. While providing redshift estimates for all 542 candidates, we construct an optically confirmed sample of 477 clusters and groups with a residual contamination of 6%. Of these, 470 (98.5%) are confirmed using MCMF and 7 systems are added through cross matching with spectroscopic group catalogs. Using observable to observable scaling and the applied confirmation threshold, we predict 8 +/- 2 real systems have been excluded with the MCMF cut required to build this low contamination sample. This number is in good agreement with the 7 systems recovered through cross matching. Thus, we expect those 477 systems to include >99% of all true clusters in the candidate list. Using an MCMF independent method, we confirm the catalog contamination of the confirmed subsample to be 6 +/- 3% and find 17 +/- 3% contamination for the full X-ray sample. The estimated contamination of the fulls sample is in agreement with MCMF dependent estimate of ~17% and the expectation from dedicated X-ray simulations of ~20%. We further present a sample of optically selected merging cluster candidates.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا