Do you want to publish a course? Click here

AutoEKF: Scalable System Identification for COVID-19 Forecasting from Large-Scale GPS Data

178   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We present an Extended Kalman Filter framework for system identification and control of a stochastic high-dimensional epidemic model. The scale and severity of the COVID-19 emergency have highlighted the need for accurate forecasts of the state of the pandemic at a high resolution. Mechanistic compartmental models are widely used to produce such forecasts and assist in the design of control and relief policies. Unfortunately, the scale and stochastic nature of many of these models often makes the estimation of their parameters difficult. With the goal of calibrating a high dimensional COVID-19 model using low-level mobility data, we introduce a method for tractable maximum likelihood estimation that combines tools from Bayesian inference with scalable optimization techniques from machine learning. The proposed approach uses automatic backward-differentiation to directly compute the gradient of the likelihood of COVID-19 incidence and death data. The likelihood of the observations is estimated recursively using an Extended Kalman Filter and can be easily optimized using gradient-based methods to compute maximum likelihood estimators. Our compartmental model is trained using GPS mobility data that measures the mobility patterns of millions of mobile phones across the United States. We show that, after calibrating against incidence and deaths data from the city of Philadelphia, our model is able to produce an accurate 30-day forecast of the evolution of the pandemic.



rate research

Read More

This paper explains the scalable methods used for extracting and analyzing the Covid-19 vaccine data. Using Big Data such as Hadoop and Hive, we collect and analyze the massive data set of the confirmed, the fatality, and the vaccination data set of Covid-19. The data size is about 3.2 Giga-Byte. We show that it is possible to store and process massive data with Big Data. The paper proceeds tempo-spatial analysis, and visual maps, charts, and pie charts visualize the result of the investigation. We illustrate that the more vaccinated, the fewer the confirmed cases.
This paper proposes a sparse Bayesian treatment of deep neural networks (DNNs) for system identification. Although DNNs show impressive approximation ability in various fields, several challenges still exist for system identification problems. First, DNNs are known to be too complex that they can easily overfit the training data. Second, the selection of the input regressors for system identification is nontrivial. Third, uncertainty quantification of the model parameters and predictions are necessary. The proposed Bayesian approach offers a principled way to alleviate the above challenges by marginal likelihood/model evidence approximation and structured group sparsity-inducing priors construction. The identification algorithm is derived as an iterative regularized optimization procedure that can be solved as efficiently as training typical DNNs. Furthermore, a practical calculation approach based on the Monte-Carlo integration method is derived to quantify the uncertainty of the parameters and predictions. The effectiveness of the proposed Bayesian approach is demonstrated on several linear and nonlinear systems identification benchmarks with achieving good and competitive simulation accuracy.
The need to forecast COVID-19 related variables continues to be pressing as the epidemic unfolds. Different efforts have been made, with compartmental models in epidemiology and statistical models such as AutoRegressive Integrated Moving Average (ARIMA), Exponential Smoothing (ETS) or computing intelligence models. These efforts have proved useful in some instances by allowing decision makers to distinguish different scenarios during the emergency, but their accuracy has been disappointing, forecasts ignore uncertainties and less attention is given to local areas. In this study, we propose a simple Multiple Linear Regression model, optimised to use call data to forecast the number of daily confirmed cases. Moreover, we produce a probabilistic forecast that allows decision makers to better deal with risk. Our proposed approach outperforms ARIMA, ETS and a regression model without call data, evaluated by three point forecast error metrics, one prediction interval and two probabilistic forecast accuracy measures. The simplicity, interpretability and reliability of the model, obtained in a careful forecasting exercise, is a meaningful contribution to decision makers at local level who acutely need to organise resources in already strained health services. We hope that this model would serve as a building block of other forecasting efforts that on the one hand would help front-line personal and decision makers at local level, and on the other would facilitate the communication with other modelling efforts being made at the national level to improve the way we tackle this pandemic and other similar future challenges.
The study of multiplicative noise models has a long history in control theory but is re-emerging in the context of complex networked systems and systems with learning-based control. We consider linear system identification with multiplicative noise from multiple state-input trajectory data. We propose exploratory input signals along with a least-squares algorithm to simultaneously estimate nominal system parameters and multiplicative noise covariance matrices. Identifiability of the covariance structure and asymptotic consistency of the least-squares estimator are demonstrated by analyzing first and second moment dynamics of the system. The results are illustrated by numerical simulations.
96 - Rui Sun , Weidong Wang , Li Chen 2021
Millimeter-wave (mmWave) communication systems rely on large-scale antenna arrays to combat large path-loss at mmWave band. Due to hardware characteristics and deployment environments, mmWave large-scale antenna systems are vulnerable to antenna element blockages and failures, which necessitate diagnostic techniques to locate faulty antenna elements for calibration purposes. Current diagnostic techniques require full or partial knowledge of channel state information (CSI), which can be challenging to acquire in the presence of antenna failures. In this letter, we propose a blind diagnostic technique to identify faulty antenna elements in mmWave large-scale antenna systems, which does not require any CSI knowledge. By jointly exploiting the sparsity of mmWave channel and failure pattern, we first formulate the diagnosis problem as a joint sparse recovery problem. Then, the atomic norm is introduced to induce the sparsity of mmWave channel over continuous Fourier dictionary. An efficient algorithm based on alternating direction method of multipliers (ADMM) is proposed to solve the formulated problem. Finally, the performance of the proposed technique is evaluated through numerical simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا