Do you want to publish a course? Click here

Standardized long gamma-ray bursts as a cosmic distance indicator

130   0   0.0 ( 0 )
 Added by Fayin Wang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Gamma-ray bursts (GRBs) are the most luminous explosions and can be detectable out to the edge of Universe. It has long been thought they can extend the Hubble diagram to very high redshifts. Several correlations between temporal or spectral properties and GRB luminosities have been proposed to make GRBs cosmological tools. However, those correlations cannot be properly standardized. In this paper, we select a long GRB sample with X-ray plateau phases produced by electromagnetic dipole emissions from central new-born magnetars. A tight correlation is found between the plateau luminosity and the end time of the plateau in X-ray afterglows out to the redshift $z=5.91$. We standardize these long GRBs X-ray light curves to a universal behavior by this correlation for the first time, with a luminosity dispersion of 0.5 dex. The derived distance-redshift relation of GRBs is in agreement with the standard $Lambda$CDM model both at low and high redshifts. The evidence of accelerating universe from this GRB sample is $3sigma$, which is the highest statistical significance from GRBs to date.

rate research

Read More

122 - Emily M. Levesque 2013
Long-duration gamma-ray bursts (LGRBs) are the signatures of extraordinarily high-energy events occurring in our universe. Since their discovery, we have determined that these events are produced during the core-collapse deaths of rare young massive stars. The host galaxies of LGRBs are an excellent means of probing the environments and populations that produce their unusual progenitors. In addition, these same young stellar progenitors makes LGRBs and their host galaxies valuable potentially powerful tracers of star formation and metallicity at high redshifts. However, properly utilizing LGRBs as probes of the early universe requires a thorough understanding of their formation and the host environments that they sample. This review looks back at some of the recent work on LGRB host galaxies that has advanced our understanding of these events and their cosmological applications, and considers the many new questions that we are poised to pursue in the coming years.
In this paper we give a brief review of our recent studies on the long and short gamma-ray bursts (GRBs) detected Swift, in an effort to understand the puzzle of classifying GRBs. We consider that it is still an appealing conjecture that both long and short GRBs are drawn from the same parent sample by observational biases.
112 - B. McBreen , S. Foley , L. Hanlon 2010
It is now more than 40 years since the discovery of gamma-ray bursts (GRBs) and in the last two decades there has been major progress in the observations of bursts, the afterglows and their host galaxies. This recent progress has been fueled by the ability of gamma-ray telescopes to quickly localise GRBs and the rapid follow-up observations with multi-wavelength instruments in space and on the ground. A total of 674 GRBs have been localised to date using the coded aperture masks of the four gamma-ray missions, BeppoSAX, HETE II, INTEGRAL and Swift. As a result there are now high quality observations of more than 100 GRBs, including afterglows and host galaxies, revealing the richness and progress in this field. The observations of GRBs cover more than 20 orders of magnitude in energy, from 10^-5 eV to 10^15 eV and also in two non-electromagnetic channels, neutrinos and gravitational waves. However the continuation of progress relies on space based instruments to detect and rapidly localise GRBs and distribute the coordinates.
122 - Patricia Schady 2017
Since the launch of the highly successful and ongoing Swift mission, the field of gamma-ray bursts (GRBs) has undergone a revolution. The arcsecond GRB localizations available within just a few minutes of the GRB alert has signified the continual sampling of the GRB evolution through the prompt to afterglow phases revealing unexpected flaring and plateau phases, the first detection of a kilonova coincident with a short GRB, and the identification of samples of low-luminosity, ultra-long, and highly dust extinguished GRBs. The increased numbers of GRB afterglows, GRB-supernova detections, redshifts, and host galaxy associations has greatly improved our understanding of what produces and powers these immense, cosmological explosions. Nevertheless, more high quality data often also reveal greater complexity. In this review, I summarize some of the milestones made in GRB research during the Swift era, and how previous widely accepted theoretical models have had to adapt to accommodate the new wealth of observational data.
The comprehensive statistical analysis of Swift X-ray light-curves, collecting data from six years of operation, revealed the existence of a universal scaling among the isotropic energy emitted in the rest frame 10-10^4 keV energy band during the prompt emission (E_{gamma,iso}), the peak of the prompt emission energy spectrum (E_{pk}), and the X-ray energy emitted in the 0.3-10 keV observed energy band (E_{X,iso}). In this paper we show that this three-parameter correlation is robust and does not depend on our definition of E_{X,iso}. It is shared by long, short, and low-energetic GRBs, differently from the well-known E_{gamma,iso}-E_{pk} correlation. We speculate that the ultimate physical property that regulates the GRB properties is the outflow Lorentz factor.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا