No Arabic abstract
Aldosterone, the main physiological mineralocorticoid in humans and other terrestrial vertebrates, first appears in lungfish, which are lobe-finned fish that are forerunners of terrestrial vertebrates. Aldosterone activation of the MR regulates internal homeostasis of water, sodium and potassium, which was critical in the conquest of land by vertebrates. We studied transcriptional activation of the slender African lungfish MR by aldosterone, other corticosteroids and progesterone and find that aldosterone, 11-deoxycorticosterone, 11-deoxycortisol and progesterone have half-maximal responses (EC50s) below 1 nM and are potential physiological mineralocorticoids. In contrast, EC50s for corticosterone and cortisol were 23 nM and 66 nM, respectively. Unexpectedly, truncated lungfish MR, consisting of the DNA-binding, hinge and steroid-binding domains, had a stronger response to corticosteroids and progesterone than full-length lungfish MR, indicating that the N-terminal domain represses steroid activation of lungfish MR, unlike human MR in which the N-terminal domain contains an activation function. BLAST searches of GenBank did not retrieve a GR ortholog, leading us to test dexamethasone and triamcinolone for activation of lungfish MR. At 10 nM, both synthetic glucocorticoids are about 4-fold stronger than 10 nM aldosterone in activating full-length lungfish MR, leading us to propose that lungfish MR also functions as a GR.
Cortisol, corticosterone and aldosterone activate full-length glucocorticoid receptor (GR) from elephant shark, a cartilaginous fish belonging to the oldest group of jawed vertebrates. Activation by aldosterone a mineralocorticoid, indicates partial divergence of elephant shark GR from the MR. Progesterone activates elephant shark MR, but not elephant shark GR. Progesterone inhibits steroid binding to elephant shark GR, but not to human GR. Deletion of the N-terminal domain (NTD) from elephant shark GR (Truncated GR) reduced the response to corticosteroids, while truncated and full-length elephant shark MR had similar responses to corticosteroids. Chimeras of elephant shark GR NTD fused to MR DBD+LBD had increased activation by corticosteroids and progesterone compared to full-length elephant shark MR. Elephant shark MR NTD fused to GR DBD+LBD had similar activation as full-length elephant shark MR, indicating that activation of human GR by the NTD evolved early in GR divergence from the MR.
We report the analysis of activation by corticosteroids and progesterone of full-length mineralocorticoid receptor (MR) from elephant shark, a cartilaginous fish belonging to the oldest group of jawed vertebrates. Based on their measured activities, aldosterone, cortisol, 11-deoxycorticosterone, corticosterone, 11-deoxcortisol, progesterone and 19-norprogesterone are potential physiological mineralocorticoids. However, aldosterone, the physiological mineralocorticoid in humans and other terrestrial vertebrates, is not found in cartilaginous or ray-finned fishes. Because progesterone is a precursor for corticosteroids that activate elephant shark MR, we propose that progesterone was an ancestral ligand for elephant shark MR. Although progesterone activates ray-finned fish MRs, progesterone does not activate human, amphibian or alligator MRs, suggesting that during the transition to terrestrial vertebrates, progesterone lost the ability to activate the MR. Comparison of RNA-sequence analysis of elephant shark MR with that of human MR suggests that MR expression in the human brain, heart, ovary, testis and other non-epithelial tissues evolved in cartilaginous fishes. Together, these data suggest that progesterone-activated MR may have unappreciated functions in elephant shark ovary and testis.
The progesterone receptor (PR) mediates progesterone regulation of female reproductive physiology, as well as gene transcription in non-reproductive tissues, such as brain, bone, lung and vasculature, in both women and men. An unusual property of progesterone is its high affinity for the mineralocorticoid receptor (MR), which regulates electrolyte transport in the kidney in humans and other terrestrial vertebrates. In humans, rats, alligators and frogs, progesterone antagonizes activation of the MR by aldosterone, the physiological mineralocorticoid in terrestrial vertebrates. In contrast, in elephant shark, ray-finned fishes and chickens, progesterone activates the MR. Interestingly, cartilaginous fishes and ray-finned fishes do not synthesize aldosterone, raising the question of which steroid(s) activate the MR in cartilaginous fishes and ray-finned fishes. The simpler synthesis of progesterone, compared to cortisol and other corticosteroids, makes progesterone a candidate physiological activator of the MR in elephant sharks and ray-finned fishes. Elephant shark and ray-finned fish MRs are expressed in diverse tissues, including heart, brain and lung, as well as, ovary and testis, two reproductive tissues that are targets for progesterone, which together suggests a multi-faceted physiological role for progesterone activation of the MR in elephant shark and ray-finned fish. The functional consequences of progesterone as an antagonist of some terrestrial vertebrate MRs and as an agonist of fish and chicken MRs are not fully understood. Indeed, little is known of physiological activities of progesterone via any vertebrate MR.
The wide spread of coronavirus disease 2019 (COVID-19) has declared a global health emergency. As one of the most important targets for antibody and drug developments, Spike RBD-ACE2 interface has received extensive attention. Here, using molecular dynamics simulations, we explicitly evaluated the binding energetic features of the RBD-ACE2 complex of both SARS-CoV and SARS-CoV-2 to find the key residues. Although the overall ACE2-binding mode of the SARS-CoV-2 RBD is nearly identical to that of the SARS-CoV RBD, the difference in binding affinity is as large as -16.35 kcal/mol. Energy decomposition analyses identified three binding patches in the SARS-CoV-2 RBD and eleven key residues (Phe486, Tyr505, Asn501, Tyr489, Gln493, Leu455 and etc) which are believed to be the main targets for drug development. The dominating forces are from van der Waals attractions and dehydration of these residues. It is also worth mention that we found seven mutational sites (Lys417, Leu455, Ala475, Gly476, Glu484, Gln498 and Val503) on SARS-CoV-2 which unexpectedly weakened the RBD-ACE2 binding. Very interestingly, the most repulsive residue at the RBD-ACE2 interface (E484), is found to be mutated in the latest UK variant, B1.1.7, cause complete virus neutralization escapes from highly neutralizing COVID-19 convalescent plasma. Our present results indicate that at least from the energetic point of view such E484 mutation may have beneficial effects on ACE2 binding. The present study provides a systematical understanding, from the energetic point of view, of the binding features of SARS-CoV-2 RBD with ACE2 acceptor. We hope that the present findings of three binding patches, key attracting residues and unexpected mutational sites can provide insights to the design of SARS-CoV-2 drugs and identification of cross-active antibodies.
The correlations of primary and secondary structures were analyzed using proteins with known structure from Protein Data Bank. The correlation values of amino acid type and the eight secondary structure types at distant position were calculated for distances between -25 and 25. Shapes of the diagrams indicate that amino acids polarity and capability for hydrogen bonding have influence on the secondary structure at some distances. Clear preference of most of the amino acids towards certain secondary structure type classifies amino acids into four groups: alpha-helix admirers, strand admirers, turn and bend admirers and the others. Group four consists of His and Cis, the amino acids that do not show clear preference for any secondary structure. Amino acids from a group have similar physicochemical properties, and the same structural characteristics. The results suggest that amino acid preference for secondary structure type is based on the structural characteristics at Cb and Cg atoms of amino acid. alpha-helix admirers do not have polar heteroatoms on Cb and Cg atoms, nor branching or aromatic group on Cb atom. Amino acids that have aromatic groups or branching on Cb atom are strand admirers. Turn and bend admirers have polar heteroatom on Cb or Cg atoms or do not have Cb atom at all. Our results indicate that polarity and capability for hydrogen bonding have influence on the secondary structure at some distance, and that amino acid preference for secondary structure is caused by structural properties at Cb or Cg atoms.