Do you want to publish a course? Click here

Online Cognitive Data Sensing and Processing Optimization in Energy-harvesting Edge Computing Systems

129   0   0.0 ( 0 )
 Added by Xian Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Mobile edge computing (MEC) has recently become a prevailing technique to alleviate the intensive computation burden in Internet of Things (IoT) networks. However, the limited device battery capacity and stringent spectrum resource significantly restrict the data processing performance of MEC-enabled IoT networks. To address the two performance limitations, we consider in this paper an MEC-enabled IoT system with an energy harvesting (EH) wireless device (WD) which opportunistically accesses the licensed spectrum of an overlaid primary communication link for task offloading. We aim to maximize the long-term average sensing rate of the WD subject to quality of service (QoS) requirement of primary link, average power constraint of MEC server (MS) and data queue stability of both MS and WD. We formulate the problem as a multi-stage stochastic optimization and propose an online algorithm named PLySE that applies the perturbed Lyapunov optimization technique to decompose the original problem into per-slot deterministic optimization problems. For each per-slot problem, we derive the closed-form optimal solution of data sensing and processing control to facilitate low-complexity real-time implementation. Interestingly, our analysis finds that the optimal solution exhibits an threshold-based structure. Simulation results collaborate with our analysis and demonstrate more than 46.7% data sensing rate improvement of the proposed PLySE over representative benchmark methods.



rate research

Read More

Wireless power transfer (WPT) is an emerging paradigm that will enable using wireless to its full potential in future networks, not only to convey information but also to deliver energy. Such networks will enable trillions of future low-power devices to sense, compute, connect, and energize anywhere, anytime, and on the move. The design of such future networks brings new challenges and opportunities for signal processing, machine learning, sensing, and computing so as to make the best use of the RF radiations, spectrum, and network infrastructure in providing cost-effective and real-time power supplies to wireless devices and enable wireless-powered applications. In this paper, we first review recent signal processing techniques to make WPT and wireless information and power transfer as efficient as possible. Topics include power amplifier and energy harvester nonlinearities, active and passive beamforming, intelligent reflecting surfaces, receive combining with multi-antenna harvester, modulation, coding, waveform, massive MIMO, channel acquisition, transmit diversity, multi-user power region characterization, coordinated multipoint, and distributed antenna systems. Then, we overview two different design methodologies: the model and optimize approach relying on analytical system models, modern convex optimization, and communication theory, and the learning approach based on data-driven end-to-end learning and physics-based learning. We discuss the pros and cons of each approach, especially when accounting for various nonlinearities in wireless-powered networks, and identify interesting emerging opportunities for the approaches to complement each other. Finally, we identify new emerging wireless technologies where WPT may play a key role -- wireless-powered mobile edge computing and wireless-powered sensing -- arguing WPT, communication, computation, and sensing must be jointly designed.
The paper investigates the problem of maximizing expected sum throughput in a fading multiple access cognitive radio network when secondary user (SU) transmitters have energy harvesting capability, and perform cooperative spectrum sensing. We formulate the problem as maximization of sum-capacity of the cognitive multiple access network over a finite time horizon subject to a time averaged interference constraint at the primary user (PU) and almost sure energy causality constraints at the SUs. The problem is a mixed integer non-linear program with respect to two decision variables namely spectrum access decision and spectrum sensing decision, and the continuous variables sensing time and transmission power. In general, this problem is known to be NP hard. For optimization over these two decision variables, we use an exhaustive search policy when the length of the time horizon is small, and a heuristic policy for longer horizons. For given values of the decision variables, the problem simplifies into a joint optimization on SU textit{transmission power} and textit{sensing time}, which is non-convex in nature. We solve the resulting optimization problem as an alternating convex optimization problem for both non-causal and causal channel state information and harvested energy information patterns at the SU base station (SBS) or fusion center (FC). We present an analytic solution for the non-causal scenario with infinite battery capacity for a general finite horizon problem.We formulate the problem with causal information and finite battery capacity as a stochastic control problem and solve it using the technique of dynamic programming. Numerical results are presented to illustrate the performance of the various algorithms.
351 - Zhifei Lin , Feng Wang , 2021
This paper considers an energy harvesting (EH) based multiuser mobile edge computing (MEC) system, where each user utilizes the harvested energy from renewable energy sources to execute its computation tasks via computation offloading and local computing. Towards maximizing the systems weighted computation rate (i.e., the number of weighted users computing bits within a finite time horizon) subject to the users energy causality constraints due to dynamic energy arrivals, the decision for joint computation offloading and local computing over time is optimized {em over time}. Assuming that the profile of channel state information and dynamic task arrivals at the users is known in advance, the weighted computation rate maximization problem becomes a convex optimization problem. Building on the Lagrange duality method, the well-structured optimal solution is analytically obtained. Both the users local computing and offloading rates are shown to have a monotonically increasing structure. Numerical results show that the proposed design scheme can achieve a significant performance gain over the alternative benchmark schemes.
Mobile edge computing (MEC) integrated with multiple radio access technologies (RATs) is a promising technique for satisfying the growing low-latency computation demand of emerging intelligent internet of things (IoT) applications. Under the distributed MapReduce framework, this paper investigates the joint RAT selection and transceiver design for over-the-air (OTA) aggregation of intermediate values (IVAs) in wireless multiuser MEC systems, while taking into account the energy budget constraint for the local computing and IVA transmission per wireless device (WD). We aim to minimize the weighted sum of the computation mean squared error (MSE) of the aggregated IVA at the RAT receivers, the WDs IVA transmission cost, and the associated transmission time delay, which is a mixed-integer and non-convex problem. Based on the Lagrange duality method and primal decomposition, we develop a low-complexity algorithm by solving the WDs RAT selection problem, the WDs transmit coefficients optimization problem, and the aggregation beamforming problem. Extensive numerical results are provided to demonstrate the effectiveness and merit of our proposed algorithm as compared with other existing schemes.
242 - Yuwen Qian , Feifei Wang , Jun Li 2019
Mobile edge computing (MEC) provides computational services at the edge of networks by offloading tasks from user equipments (UEs). This letter employs an unmanned aerial vehicle (UAV) as the edge computing server to execute offloaded tasks from the ground UEs. We jointly optimize user association, UAV trajectory, and uploading power of each UE to maximize sum bits offloaded from all UEs to the UAV, subject to energy constraint of the UAV and quality of service (QoS) of each UE. To address the non-convex optimization problem, we first decompose it into three subproblems that are solved with integer programming and successive convex optimization methods respectively. Then, we tackle the overall problem by the multi-variable iterative optimization algorithm. Simulations show that the proposed algorithm can achieve a better performance than other baseline schemes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا