Do you want to publish a course? Click here

Inferring a Continuous Distribution of Atom Coordinates from Cryo-EM Images using VAEs

159   0   0.0 ( 0 )
 Added by Dan Rosenbaum
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Cryo-electron microscopy (cryo-EM) has revolutionized experimental protein structure determination. Despite advances in high resolution reconstruction, a majority of cryo-EM experiments provide either a single state of the studied macromolecule, or a relatively small number of its conformations. This reduces the effectiveness of the technique for proteins with flexible regions, which are known to play a key role in protein function. Recent methods for capturing conformational heterogeneity in cryo-EM data model it in volume space, making recovery of continuous atomic structures challenging. Here we present a fully deep-learning-based approach using variational auto-encoders (VAEs) to recover a continuous distribution of atomic protein structures and poses directly from picked particle images and demonstrate its efficacy on realistic simulated data. We hope that methods built on this work will allow incorporation of stronger prior information about protein structure and enable better understanding of non-rigid protein structures.



rate research

Read More

Cryo-electron microscopy (cryo-EM) is a powerful technique for determining the structure of proteins and other macromolecular complexes at near-atomic resolution. In single particle cryo-EM, the central problem is to reconstruct the three-dimensional structure of a macromolecule from $10^{4-7}$ noisy and randomly oriented two-dimensional projections. However, the imaged protein complexes may exhibit structural variability, which complicates reconstruction and is typically addressed using discrete clustering approaches that fail to capture the full range of protein dynamics. Here, we introduce a novel method for cryo-EM reconstruction that extends naturally to modeling continuous generative factors of structural heterogeneity. This method encodes structures in Fourier space using coordinate-based deep neural networks, and trains these networks from unlabeled 2D cryo-EM images by combining exact inference over image orientation with variational inference for structural heterogeneity. We demonstrate that the proposed method, termed cryoDRGN, can perform ab initio reconstruction of 3D protein complexes from simulated and real 2D cryo-EM image data. To our knowledge, cryoDRGN is the first neural network-based approach for cryo-EM reconstruction and the first end-to-end method for directly reconstructing continuous ensembles of protein structures from cryo-EM images.
Cryo-EM reconstruction algorithms seek to determine a molecules 3D density map from a series of noisy, unlabeled 2D projection images captured with an electron microscope. Although reconstruction algorithms typically model the 3D volume as a generic function parameterized as a voxel array or neural network, the underlying atomic structure of the protein of interest places well-defined physical constraints on the reconstructed structure. In this work, we exploit prior information provided by an atomic model to reconstruct distributions of 3D structures from a cryo-EM dataset. We propose Cryofold, a generative model for a continuous distribution of 3D volumes based on a coarse-grained model of the proteins atomic structure, with radial basis functions used to model atom locations and their physics-based constraints. Although the reconstruction objective is highly non-convex when formulated in terms of atomic coordinates (similar to the protein folding problem), we show that gradient descent-based methods can reconstruct a continuous distribution of atomic structures when initialized from a structure within the underlying distribution. This approach is a promising direction for integrating biophysical simulation, learned neural models, and experimental data for 3D protein structure determination.
120 - Nachi Gupta , Raphael Hauser , 2007
We discuss a method for predicting financial movements and finding pockets of predictability in the price-series, which is built around inferring the heterogeneity of trading strategies in a multi-agent trader population. This work explores extensions to our previous framework (arXiv:physics/0506134). Here we allow for more intelligent agents possessing a richer strategy set, and we no longer constrain the estimate for the heterogeneity of the agents to a probability space. We also introduce a scheme which allows the incorporation of models with a wide variety of agent types, and discuss a mechanism for the removal of bias from relevant parameters.
Single-particle cryo-electron microscopy (cryo-EM) reconstructs the three-dimensional (3D) structure of bio-molecules from a large set of 2D projection images with random and unknown orientations. A crucial step in the single-particle cryo-EM pipeline is 3D refinement, which resolves a high-resolution 3D structure from an initial approximate volume by refining the estimation of the orientation of each projection. In this work, we propose a new approach that refines the projection angles on the continuum. We formulate the optimization problem over the density map and the orientations jointly. The density map is updated using the efficient alternating-direction method of multipliers, while the orientations are updated through a semi-coordinate-wise gradient descent for which we provide an explicit derivation of the gradient. Our method eliminates the requirement for a fine discretization of the orientation space and does away with the classical but computationally expensive template-matching step. Numerical results demonstrate the feasibility and performance of our approach compared to several baselines.
Single-Particle Reconstruction (SPR) in Cryo-Electron Microscopy (cryo-EM) is the task of estimating the 3D structure of a molecule from a set of noisy 2D projections, taken from unknown viewing directions. Many algorithms for SPR start from an initial reference molecule, and alternate between refining the estimated viewing angles given the molecule, and refining the molecule given the viewing angles. This scheme is called iterative refinement. Reliance on an initial, user-chosen reference introduces model bias, and poor initialization can lead to slow convergence. Furthermore, since no ground truth is available for an unsolved molecule, it is difficult to validate the obtained results. This creates the need for high quality ab initio models that can be quickly obtained from experimental data with minimal priors, and which can also be used for validation. We propose a procedure to obtain such an ab initio model directly from raw data using Kams autocorrelation method. Kams method has been known since 1980, but it leads to an underdetermined system, with missing orthogonal matrices. Until now, this system has been solved only for special cases, such as highly symmetric molecules or molecules for which a homologous structure was already available. In this paper, we show that knowledge of just two clean projections is sufficient to guarantee a unique solution to the system. This system is solved by an optimization-based heuristic. For the first time, we are then able to obtain a low-resolution ab initio model of an asymmetric molecule directly from raw data, without 2D class averaging and without tilting. Numerical results are presented on both synthetic and experimental data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا