No Arabic abstract
We describe the deployment and first tests on Sky of CONCERTO, a large field-of-view (18.6arc-min) spectral-imaging instrument. The instrument operates in the range 130-310GHz from the APEX 12-meters telescope located at 5100m a.s.l. on the Chajnantor plateau. Spectra with R=1-300 are obtained using a fast (2.5Hz mechanical frequency) Fourier Transform Spectrometer (FTS), coupled to a continuous dilution cryostat with a base temperature of 60mK. Two 2152-pixels arrays of Lumped Element Kinetic Inductance Detectors (LEKID) are installed in the cryostat that also contains the cold optics and the front-end electronics. CONCERTO, installed in April 2021, generates more than 20k spectra per second during observations. We describe the final development phases, the installation and the first results obtained on Sky.
In the period 2012 June - 2013 October, the Sardinia Radio Telescope (SRT) went through the technical commissioning phase. The characterization involved three first-light receivers, ranging in frequency between 300MHz and 26GHz, connected to a Total Power back-end. It also tested and employed the telescope active surface installed in the main reflector of the antenna. The instrument status and performance proved to be in good agreement with the expectations in terms of surface panels alignment (at present 300 um rms to be improved with microwave holography), gain (~0.6 K/Jy in the given frequency range), pointing accuracy (5 arcsec at 22 GHz) and overall single-dish operational capabilities. Unresolved issues include the commissioning of the receiver centered at 350 MHz, which was compromised by several radio frequency interferences, and a lower-than-expected aperture efficiency for the 22-GHz receiver when pointing at low elevations. Nevertheless, the SRT, at present completing its Astronomical Validation phase, is positively approaching its opening to the scientific community.
The GlueX experiment takes place in experimental Hall D at Jefferson Lab (JLab). With a linearly polarized photon beam of up to 12 GeV energy, GlueX is a dedicated experiment to search for hybrid mesons via photoproduction reactions. The low-intensity (Phase I) of GlueX was recently completed; the high-intensity (Phase II) started in 2020 including an upgraded particle identification system, known as the DIRC (Detection of Internally Reflected Cherenkov light), utilizing components from the decommissioned BaBar experiment. The identification and separation of the kaon final states will significantly enhance the GlueX physics program, by adding the capability of accessing the strange quark flavor content of conventional (and potentially hybrid) mesons. In these proceedings, we report that the installation and commissioning of the DIRC detector has been successfully completed.
Nighttime images taken with DSLR cameras from the International Space Station (ISS) can provide valuable information on the spatial and temporal variation of artificial nighttime lighting on Earth. In particular, this is the only source of historical and current visible multispectral data across the world (DMSP/OLS and SNPP/VIIRS-DNB data are panchromatic and multispectral in the infrared but not at visible wavelengths). The ISS images require substantial processing and proper calibration to exploit intensities and ratios from the RGB channels. Here we describe the different calibration steps, addressing in turn Decodification, Linearity correction (ISO dependent), Flat field/Vignetting, Spectral characterization of the channels, Astrometric calibration/georeferencing, Photometric calibration (stars)/Radiometric correction (settings correction - by exposure time, ISO, lens transmittance, etc) and Transmittance correction (window transmittance, atmospheric correction). We provide an example of the application of this processing method to an image of Spain.
We present a novel remote gas detection and identification technique based on correlation spectroscopy with a piezoelectric tunable fibre-optic Fabry-Perot filter. We show that the spectral correlation amplitude between the filter transmission window and gas absorption features is related to the gas absorption optical depth, and that different gases can be distinguished from one another using their correlation signal phase. Using an observed telluric-corrected, high-resolution near-infrared spectrum of Venus, we show via simulation that the Doppler shift of gases lines can be extracted from the phase of the lock-in signal using low-cost, compact, and lightweight fibre-optic components with lock-in amplification to improve the signal-to-noise ratio. This correlation spectroscopy technique has applications in the detection and radial velocity determination of faint spectral features in astronomy and remote sensing. We experimentally demonstrate remote CO2 detection system using a lock-in amplifier, fibre-optic Fabry-Perot filter, and single channel photodiode.
This commentary is written in response to arXiv:1907.13198. In this article, Zmuidzinas et al. raise questions about the results reported by our group in Nature Astronomy (DOI: 10.1038/s41550-019-0828-6) regarding our experimental methodology and our device performance metrics. As described in this Response, Zmuidzinas et al. have unfortunately missed some basic principles on impedance matching and the physics of photomixers and plasmonics that are at the heart of their categorical conclusions. Here, we correct these misunderstandings and discharge all of their flawed conclusions. Therefore, all of the results and conclusions reported in our Nature Astronomy manuscript remain correct, as before.