Do you want to publish a course? Click here

A Training-free and Reference-free Summarization Evaluation Metric via Centrality-weighted Relevance and Self-referenced Redundancy

62   0   0.0 ( 0 )
 Added by Wang Chen
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In recent years, reference-based and supervised summarization evaluation metrics have been widely explored. However, collecting human-annotated references and ratings are costly and time-consuming. To avoid these limitations, we propose a training-free and reference-free summarization evaluation metric. Our metric consists of a centrality-weighted relevance score and a self-referenced redundancy score. The relevance score is computed between the pseudo reference built from the source document and the given summary, where the pseudo reference content is weighted by the sentence centrality to provide importance guidance. Besides an $F_1$-based relevance score, we also design an $F_beta$-based variant that pays more attention to the recall score. As for the redundancy score of the summary, we compute a self-masked similarity score with the summary itself to evaluate the redundant information in the summary. Finally, we combine the relevance and redundancy scores to produce the final evaluation score of the given summary. Extensive experiments show that our methods can significantly outperform existing methods on both multi-document and single-document summarization evaluation.



rate research

Read More

Reference-free evaluation has the potential to make machine translation evaluation substantially more scalable, allowing us to pivot easily to new languages or domains. It has been recently shown that the probabilities given by a large, multilingual model can achieve state of the art results when used as a reference-free metric. We experiment with various modifications to this model and demonstrate that by scaling it up we can match the performance of BLEU. We analyze various potential weaknesses of the approach and find that it is surprisingly robust and likely to offer reasonable performance across a broad spectrum of domains and different system qualities.
Evaluating large summarization corpora using humans has proven to be expensive from both the organizational and the financial perspective. Therefore, many automatic evaluation metrics have been developed to measure the summarization quality in a fast and reproducible way. However, most of the metrics still rely on humans and need gold standard summaries generated by linguistic experts. Since BLANC does not require golden summaries and supposedly can use any underlying language model, we consider its application to the evaluation of summarization in German. This work demonstrates how to adjust the BLANC metric to a language other than English. We compare BLANC scores with the crowd and expert ratings, as well as with commonly used automatic metrics on a German summarization data set. Our results show that BLANC in German is especially good in evaluating informativeness.
Text summarization refers to the process that generates a shorter form of text from the source document preserving salient information. Many existing works for text summarization are generally evaluated by using recall-oriented understudy for gisting evaluation (ROUGE) scores. However, as ROUGE scores are computed based on n-gram overlap, they do not reflect semantic meaning correspondences between generated and reference summaries. Because Korean is an agglutinative language that combines various morphemes into a word that express several meanings, ROUGE is not suitable for Korean summarization. In this paper, we propose evaluation metrics that reflect semantic meanings of a reference summary and the original document, Reference and Document Aware Semantic Score (RDASS). We then propose a method for improving the correlation of the metrics with human judgment. Evaluation results show that the correlation with human judgment is significantly higher for our evaluation metrics than for ROUGE scores.
380 - Yann Ponty 2012
Two formalisms, both based on context-free grammars, have recently been proposed as a basis for a non-uniform random generation of combinatorial objects. The former, introduced by Denise et al, associates weights with letters, while the latter, recently explored by Weinberg et al in the context of random generation, associates weights to transitions. In this short note, we use a simple modification of the Greibach Normal Form transformation algorithm, due to Blum and Koch, to show the equivalent expressivities, in term of their induced distributions, of these two formalisms.
Large pretrained generative models like GPT-3 often suffer from hallucinating non-existent or incorrect content, which undermines their potential merits in real applications. Existing work usually attempts to detect these hallucinations based on a corresponding oracle reference at a sentence or document level. However ground-truth references may not be readily available for many free-form text generation applications, and sentence- or document-level detection may fail to provide the fine-grained signals that would prevent fallacious content in real time. As a first step to addressing these issues, we propose a novel token-level, reference-free hallucination detection task and an associated annotated dataset named HaDes (HAllucination DEtection dataSet). To create this dataset, we first perturb a large number of text segments extracted from English language Wikipedia, and then verify these with crowd-sourced annotations. To mitigate label imbalance during annotation, we utilize an iterative model-in-loop strategy. We conduct comprehensive data analyses and create multiple baseline models.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا