Partial Strong Structural Controllability


Abstract in English

In linear control theory, a structured system is a system whose entries of its system matrices are either fixed zero or indeterminate. This system is structurally controllable, if there exists a realization of it that is controllable, and is strongly structurally controllable (SSC), if for any nonzero values of the indeterminate entries, the corresponding system is controllable. This paper introduces a new controllability notion, termed partial strong structural controllability (PSSC), which naturally extends SSC and bridges the gap between structural controllability and SSC. Dividing the indeterminate entries into two categories, generic entries and unspecified entries, a system is PSSC, if for almost all values of the generic entries in the parameter space except for a set of measure zero, and any nonzero (complex) values of the unspecified entries, the corresponding system is controllable. We highlight that this notion generalizes the generic property embedded in the conventional structural controllability for single-input systems. We then give algebraic and (bipartite) graph-theoretic necessary and sufficient conditions for single-input systems to be PSSC. Conditions for multi-input systems are subsequently given for a particular case. We also extend our results to the case where the unspecified entries can take either nonzero values or zero/nonzero values. Finally, we show the established results can induce a new graph-theoretic criterion for SSC in maximum matchings over the system bipartite graph representations.

Download