Do you want to publish a course? Click here

Bayesian Mechanics for Stationary Processes

65   0   0.0 ( 0 )
 Added by Lancelot Da Costa
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper develops a Bayesian mechanics for adaptive systems. Firstly, we model the interface between a system and its environment with a Markov blanket. This affords conditions under which states internal to the blanket encode information about external states. Second, we introduce dynamics and represent adaptive systems as Markov blankets at steady-state. This allows us to identify a wide class of systems whose internal states appear to infer external states, consistent with variational inference in Bayesian statistics and theoretical neuroscience. Finally, we partition the blanket into sensory and active states. It follows that active states can be seen as performing active inference and well-known forms of stochastic control (such as PID control), which are prominent formulations of adaptive behaviour in theoretical biology and engineering.



rate research

Read More

388 - John Gough 2007
We introduce a concept of a quantum wide sense stationary process taking values in a C*-algebra and expected in a sub-algebra. The power spectrum of such a process is defined, in analogy to classical theory, as a positive measure on frequency space taking values in the expected algebra. The notion of linear quantum filters is introduced as some simple examples mentioned.
In this paper, we present a Hopf algebra description of a bosonic quantum model, using the elementary combinatorial elements of Bell and Stirling numbers. Our objective in doing this is as follows. Recent studies have revealed that perturbative quantum field theory (pQFT) displays an astonishing interplay between analysis (Riemann zeta functions), topology (Knot theory), combinatorial graph theory (Feynman diagrams) and algebra (Hopf structure). Since pQFT is an inherently complicated study, so far not exactly solvable and replete with divergences, the essential simplicity of the relationships between these areas can be somewhat obscured. The intention here is to display some of the above-mentioned structures in the context of a simple bosonic quantum theory, i.e. a quantum theory of non-commuting operators that do not depend on space-time. The combinatorial properties of these boson creation and annihilation operators, which is our chosen example, may be described by graphs, analogous to the Feynman diagrams of pQFT, which we show possess a Hopf algebra structure. Our approach is based on the quantum canonical partition function for a boson gas.
This paper reports the results of an ongoing in-depth analysis of the classical trajectories of the class of non-Hermitian $PT$-symmetric Hamiltonians $H=p^2+ x^2(ix)^varepsilon$ ($varepsilongeq0$). A variety of phenomena, heretofore overlooked, have been discovered such as the existence of infinitely many separatrix trajectories, sequences of critical initial values associated with limiting classical orbits, regions of broken $PT$-symmetric classical trajectories, and a remarkable topological transition at $varepsilon=2$. This investigation is a work in progress and it is not complete; many features of complex trajectories are still under study.
318 - Cesare Tronci 2018
This paper presents the momentum map structures which emerge in the dynamics of mixed states. Both quantum and classical mechanics are shown to possess analogous momentum map pairs. In the quantum setting, the right leg of the pair identifies the Berry curvature, while its left leg is shown to lead to more general realizations of the density operator which have recently appeared in quantum molecular dynamics. Finally, the paper shows how alternative representations of both the density matrix and the classical density are equivariant momentum maps generating new Clebsch representations for both quantum and classical dynamics. Uhlmanns density matrix and Koopman-von Neumann wavefunctions are shown to be special cases of this construction.
Noethers celebrated theorem associating symmetry and conservation laws in classical field theory is adapted to allow for broken symmetry in geometric mechanics and is shown to play a central role in deriving and understanding the generation of fluid circulation via the Kelvin-Noether theorem for ideal fluids with stochastic advection by Lie transport (SALT).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا