Teleparallel Gravity: From Theory to Cosmology


Abstract in English

Teleparallel gravity has significantly increased in popularity in recent decades, bringing attention to Einsteins other theory of gravity. In this Review, we relate this form of geometry to the broader metric-affine approach to forming gravitational theories where we describe a systematic way of constructing consistent teleparallel theories that respect certain physical conditions such as local Lorentz invariance. We first use teleparallel gravity to formulate a teleparallel equivalent of general relativity which is dynamically equivalent to general relativity but which may have different behaviors for other scenarios, such as quantum gravity. After setting this foundation, we describe the plethora of modified teleparallel theories of gravity that have been proposed in the literature. In the second part of the Review, we first survey works in teleparallel astrophysics literature where we focus on the open questions in this regime of physics. We then discuss the cosmological consequences for the various formulations of teleparallel gravity. We do this at background level by exploring works using various approaches ranging from dynamical systems to Noether symmetries, and more. Naturally, we then discuss perturbation theory, firstly by giving a concise approach in which this can be applied in teleparallel gravity theories and then apply it to a number of important theories in the literature. Finally, we examine works in observational and precision cosmology across the plethora of proposal theories. This is done using some of the latest observations and is used to tackle cosmological tensions which may be alleviated in teleparallel cosmology. We also introduce a number of recent works in the application of machine learning to gravity, we do this through deep learning and Gaussian processes, together with discussions about other approaches in the literature.

Download