Do you want to publish a course? Click here

High-accuracy analytical solutions for the projected mass (counts) and surface density (brightness) of Einasto profiles

88   0   0.0 ( 0 )
 Added by Barun Dhar
 Publication date 2021
  fields Physics
and research's language is English
 Authors Barun K. Dhar




Ask ChatGPT about the research

The Einasto profile has been successful in describing the density profiles of dark matter haloes in $Lambda$CDM N-body simulations. It has also been able to describe multiple components in the surface brightness profiles of galaxies. However, analytically projecting it to calculate quantities under projection is challenging. In this paper, we will see the development of a highly accurate analytical approximation for the mass (or counts) enclosed in an infinitely long cylindrical column for Einasto profiles--also known as the projected mass (or counts)--using a novel methodology. We will then develop a self-consistent high-accuracy model for the surface density from the expression for the projected mass. Both models are quite accurate for a broad family of functions, with a shape parameter $alpha$ varying by a factor of 100 in the range $0.05 lesssim alpha lesssim 5.0$, with fractional errors $sim 10^{-6}$ for $alpha lesssim 0.4$. Profiles with $alpha lesssim 0.4$ have been shown to fit the density profiles of dark matter haloes in N-body simulations as well as the luminosity profiles of the outer components of massive galaxies. Since the projected mass and the surface density are used in gravitational lensing, I will illustrate how these models facilitate (for the first time) analytical computation of several quantities of interest in lensing due to Einasto profiles. The models, however, are not limited to lensing and apply to similar quantities under projection, such as the projected luminosity, the projected (columnar) number counts and the projected density or the surface brightness.



rate research

Read More

Polytropes have gained renewed interest because they account for several seemingly-disconnected observational properties of galaxies. Here we study if polytropes are also able to explain the stellar mass distribution within galaxies. We develop a code to fit surface density profiles using polytropes projected in the plane of the sky (propols). Sersic profiles are known to be good proxies for the global shapes of galaxies and we find that, ignoring central cores, propols and Sersic profiles are indistinguishable within observational errors (within 5 % over 5 orders of magnitude in surface density). The range of physically meaningful polytropes yields Sersic indexes between 0.4 and 6. The code has been systematically applied to ~750 galaxies with carefully measured mass density profiles and including all morphological types and stellar masses (7 < log (Mstar/Msun) < 12). The propol fits are systematically better than Sersic profiles when log(Mstar/Msun) < 9 and systematically worst when log(Mstar/Msun) > 10. Although with large scatter, the observed polytropic indexes increase with increasing mass and tend to cluster around m=5. For the most massive galaxies, propols are very good at reproducing their central parts, but they do not handle well cores and outskirts altogether. Polytropes are self-gravitating systems in thermal meta-equilibrium as defined by the Tsallis entropy. Thus, the above results are compatible with the principle of maximum Tsallis entropy dictating the internal structure in dwarf galaxies and in the central region of massive galaxies.
We introduce a method for producing a galaxy sample unbiased by surface brightness and stellar mass, by selecting star-forming galaxies via the positions of core-collapse supernovae (CCSNe). Whilst matching $sim$2400 supernovae from the SDSS-II Supernova Survey to their host galaxies using IAC Stripe 82 legacy coadded imaging, we find $sim$150 previously unidentified low surface brightness galaxies (LSBGs). Using a sub-sample of $sim$900 CCSNe, we infer CCSN-rate and star-formation rate densities as a function of galaxy stellar mass, and the star-forming galaxy stellar mass function. Resultant star-forming galaxy number densities are found to increase following a power-law down to our low mass limit of $sim10^{6.4}$ M$_{odot}$ by a single Schechter function with a faint-end slope of $alpha = -1.41$. Number densities are consistent with those found by the EAGLE simulations invoking a $Lambda$-CDM cosmology. Overcoming surface brightness and stellar mass biases is important for assessment of the sub-structure problem. In order to estimate galaxy stellar masses, a new code for the calculation of galaxy photometric redshifts, zMedIC, is also presented, and shown to be particularly useful for small samples of galaxies.
202 - Sagnick Mukherjee 2018
We use data from the All Wavelength Extended Groth Strip International Survey to construct stacked X-ray maps of optically bright active galaxies (AGN) and an associated control sample of galaxies at high redshift (z less than 0.6). From our analysis of the surface brightness profiles obtained from these X-ray maps, we find evidence of feedback from the active nuclei. We find that excluding galaxies and AGN, residing in group environments, from our samples enhances the significance of our detection. Our results support the tentative findings of Chatterjee et al. who use X-ray selected AGN for their analysis. We discuss the implications of these results in the context of quantifying AGN feedback and show that the current method can be used to extract X-ray source population in high redshift galaxies.
We present the analytical framework for converting projected light distributions with a Sersic profile into three-dimensional light distributions for stellar systems of arbitrary triaxial shape. The main practical result is the definition of a simple yet robust measure of intrinsic galaxy size: the median radius $r_mathrm{med}$, defined as the radius of a sphere that contains 50% of the total luminosity or mass, that is, the median distance of a star to the galaxy center. We examine how $r_mathrm{med}$ depends on projected size measurements as a function of Sersic index and intrinsic axis ratios, and demonstrate its relative independence of these parameters. As an application we show that the projected semi-major axis length of the ellipse enclosing 50% of the light is an unbiased proxy for $r_mathrm{med}$, with small galaxy-to-galaxy scatter of $sim$10% (1$sigma$), under the condition that the variation in triaxiality within the population is small. For galaxy populations with unknown or a large range in triaxiality an unbiased proxy for $r_mathrm{med}$ is $1.3times R_{e}$, where $R_{e}$ is the circularized half-light radius, with galaxy-to-galaxy scatter of 20-30% (1$sigma$). We also describe how inclinations can be estimated for individual galaxies based on the measured projected shape and prior knowledge of the intrinsic shape distribution of the corresponding galaxy population. We make the numerical implementation of our calculations available.
114 - W.J.G. de Blok 2005
A recent study has claimed that the rotation curve shapes and mass densities of Low Surface Brightness (LSB) galaxies are largely consistent with $Lambda$CDM predictions, in contrast to a large body of observational work. I demonstrate that the method used to derive this conclusion is incapable of distinguishing the characteristic steep CDM mass-density distribution from the core-dominated mass-density distributions found observationally: even core-dominated pseudo-isothermal haloes would be inferred to be consistent with CDM. This method can therefore make no definitive statements on the (dis)agreement between the data and CDM simulations. After introducing an additional criterion that does take the slope of the mass-distribution into account I find that only about a quarter of the LSB galaxies investigated are possibly consistent with CDM. However, for most of these the fit parameters are so weakly constrained that this is not a strong conclusion. Only 3 out of 52 galaxies have tightly constrained solutions consistent with $Lambda$CDM. Two of these galaxies are likely dominated by stars, leaving only one possible dark matter dominated, CDM-consistent candidate, forming a mere 2 per cent of the total sample. These conclusions are based on comparison of data and simulations at identical radii and fits to the entire rotation curves. LSB galaxies that are consistent with CDM simulations, if they exist, seem to be rare indeed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا