Language Models are Good Translators


Abstract in English

Recent years have witnessed the rapid advance in neural machine translation (NMT), the core of which lies in the encoder-decoder architecture. Inspired by the recent progress of large-scale pre-trained language models on machine translation in a limited scenario, we firstly demonstrate that a single language model (LM4MT) can achieve comparable performance with strong encoder-decoder NMT models on standard machine translation benchmarks, using the same training data and similar amount of model parameters. LM4MT can also easily utilize source-side texts as additional supervision. Though modeling the source- and target-language texts with the same mechanism, LM4MT can provide unified representations for both source and target sentences, which can better transfer knowledge across languages. Extensive experiments on pivot-based and zero-shot translation tasks show that LM4MT can outperform the encoder-decoder NMT model by a large margin.

Download