Strain-sensitive superconductivity in kagome metals KV$_3$Sb$_5$ and CsV$_3$Sb$_5$ probed by point-contact spectroscopy


Abstract in English

The kagome lattice is host to flat bands, topological electronic structures, Van Hove singularities and diverse electronic instabilities, providing an ideal platform for realizing highly tunable electronic states. Here, we report soft- and mechanical- point-contact spectroscopy (SPCS and MPCS) studies of the kagome superconductors KV$_3$Sb$_5$ and CsV$_3$Sb$_5$. Compared to the superconducting transition temperature $T_{rm c}$ from specific heat measurements (2.8~K for CsV$_3$Sb$_5$ and 1.0~K for KV$_3$Sb$_5$), significantly enhanced values of $T_{rm c}$ are observed via the zero-bias conductance of SPCS ($sim$4.2~K for CsV$_3$Sb$_5$ and $sim$1.8~K for KV$_3$Sb$_5$), which become further enhanced in MPCS measurements ($sim$5.0~K for CsV$_3$Sb$_5$ and $sim$3.1~K for KV$_3$Sb$_5$). While the differential conductance curves from SPCS are described by a two-gap $s$-wave model, a single $s$-wave gap reasonably captures the MPCS data, likely due to a diminishing spectral weight of the other gap. The enhanced superconductivity probably arises from local strain caused by the point-contact, which also leads to the evolution from two-gap to single-gap behaviors in different point-contacts. Our results demonstrate highly strain-sensitive superconductivity in kagome metals CsV$_3$Sb$_5$ and KV$_3$Sb$_5$, which may be harnessed in the manipulation of possible Majorana zero modes.

Download