Do you want to publish a course? Click here

Preserving quantum correlations and coherence with non-Markovianity

166   0   0.0 ( 0 )
 Added by Manfredi Scalici
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Open quantum systems exhibit a rich phenomenology, in comparison to closed quantum systems that evolve unitarily according to the Schrodinger equation. The dynamics of an open quantum system are typically classified into Markovian and non-Markovian, depending on whether the dynamics can be decomposed into valid quantum operations at any time scale. Since Markovian evolutions are easier to simulate, compared to non-Markovian dynamics, it is reasonable to assume that non-Markovianity can be employed for useful quantum-technological applications. Here, we demonstrate the usefulness of non-Markovianity for preserving correlations and coherence in quantum systems. For this, we consider a broad class of qubit evolutions, having a decoherence matrix separated from zero for large times. While any such Markovian evolution leads to an exponential loss of correlations, non-Markovianity can help to preserve correlations even in the limit $t rightarrow infty$. For covariant qubit evolutions, we also show that non-Markovianity can be used to preserve quantum coherence at all times, which is an important resource for quantum metrology. We explicitly demonstrate this effect experimentally with linear optics, by implementing the required evolution that is non-Markovian at all times.



rate research

Read More

Based on the nonincreasing property of quantum coherence via skew information under incoherent completely positive and trace-preserving maps, we propose a non-Markovianity measure for open quantum processes. As applications, by applying the proposed measure to some typical noisy channels, we find that it is equivalent to the three previous measures of non-Markovianity for phase damping and amplitude damping channels, i.e., the measures based on the quantum trace distance, dynamical divisibility, and quantum mutual information. For the random unitary channel, it is equivalent to the non-Markovianity measure based on $l_1$ norm of coherence for a class of output states and it is incompletely equivalent to the measure based on dynamical divisibility. We also use the modified Tsallis relative $alpha$ entropy of coherence to detect the non-Markovianity of dynamics of quantum open systems, the results show that the modified Tsallis relative $alpha$ entropy of coherence are more comfortable than the original Tsallis relative $alpha$ entropy of coherence for small $alpha$.
The dynamics of open quantum systems and manipulation of quantum resources are both of fundamental interest in quantum physics. Here, we investigate the relation between quantum Markovianity and coherence, providing an effective way for detecting non-Markovianity based on the textit{quantum-incoherent relative entropy of coherence} ($mathcal{QI}$ REC). We theoretically show the relation between completely positive (CP) divisibility and the monotonic behavior of the $mathcal{QI}$ REC. Also we implement an all-optical experiment to demonstrate that the behavior of the $mathcal{QI}$ REC is coincident with the entanglement shared between the system and the ancilla for both Markovian and non-Markovian evolution; while other coherence-based non-Markovian information carriers violate monotonicity, even in Markovian processes. Moreover, we experimentally observe that non-Markovianity enhances the ability of creating coherence on an ancilla. This is the first experimental study of the relation between dynamical behavior of the $mathcal{QI}$ REC and the phenomenon of information backflow. Moreover, our method for detecting non-Markovianity is applicable to general quantum evolutions.
We address the dynamics of quantum correlations in a two-qubit system subject to unbalanced random telegraph noise (RTN) and discuss in details the similarities and the differences with the balanced case. We also evaluate quantum non-Markovianity of the dynamical map. Finally, we discuss the effects of unbalanced RTN on teleportation, showing that noise imbalance mitigates decoherence and preserves teleportation fidelity.
The non-Markovian nature of open quantum dynamics lies in the structure of the multitime correlations, which are accessible by means of interventions. Here, by examining multitime correlations, we show that it is possible to engineer non-Markovian systems with only long-term memory but seemingly no short-term memory, so that their non-Markovianity is completely non-detectable by any interventions up to an arbitrarily large time. Our results raise the question about the assessibility of non-Markovianity: in principle, non-Markovian effects that are perfectly elusive to interventions may emerge at much later times.
Detuned systems can spontaneously achieve a synchronous dynamics and display robust quantum correlations in different local and global dissipation regimes. Beyond the Markovian limit, information backflow from the environment becomes a crucial mechanism whose interplay with spontaneous synchronization is unknown. Considering a model of two coupled qubits, one of which interacts with a dissipative environment, we show that non-Markovianity is highly detrimental for the emergence of synchronization, for the latter can be delayed and hindered because of the presence of information backflow. The results are obtained considering both a master equation approach and a collision model based on repeated interactions, which represents a very versatile tool to tailor the desired kind of environment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا