No Arabic abstract
In this paper, we investigate the photon sphere, shadow radius and quasinormal modes of a charged black hole in presence of quintessence. The result shows that the shadow radius decreases with the increase of the electric charge. The quasinormal modes are derived by the sixth WKB approximation method and shadow radius, respectively. For the fixed electric charge and multipole number, the values of the real and imaginary parts of the quasinormal modes decrease with the increase of the quintessence charge. When the value of the multipole number is large, the quasinormal modes derived by the two methods are consistent, which shows the correspondence between the quasinormal modes in the eikonal limit and shadow. When the value of the multipole number is small, the quasinormal modes obtained by the two methods are also in good agreement.
We consider quantum corrections for the Schwarzschild black hole metric by using the generalized uncertainty principle (GUP) to investigate quasinormal modes, shadow and their relationship in the eikonal limit. We calculate the quasinormal frequencies of the quantum-corrected Schwarzschild black hole by using the sixth-order Wentzel-Kramers-Brillouin (WKB) approximation, and also perform a numerical analysis that confirms the results obtained from this approach. We also find that the shadow radius is nonzero even at very small mass limit for finite GUP parameter.
We consider the equivalence of quasinormal modes and geodesic quantities recently brought back due to the black hole shadow observation by Event Horizon Telescope. Using WKB method we found an analytical relation between the real part of quasinormal frequencies at the eikonal limit and black hole shadow radius. We verify this correspondence with two black hole families in $4$ and $D$ dimensions, respectively.
The quasinormal modes (QNMs) of a regular black hole with charge are calculated in the eikonal approximation. In the eikonal limit the QNMs of black hole are determined by the parameters of the unstable circular null geodesics. The behaviors of QNMs are compared with QNMs of Reisner-Nordstr{o}m black hole, it is done by fixing some of the parameters that characterize the black holes and varying another. We observed that the parameter that is related one effective cosmological constant at small distances , determines the behaviors of the QNMs of regular black hole with charge.
In this paper, we investigate the photon sphere, shadow radius and quasinormal modes of a four-dimensional charged Einstein-Gauss-Bonnet black hole. The perturbation of a massless scalar field in the black holes background is adopted. The quasinormal modes are gotten by the $6th$ order WKB approximation approach and shadow radius, respectively. When the value of the Gauss-Bonnet coupling constant increase, the values of the real parts of the quasinormal modes increase and those of the imaginary parts decrease. The coincidence degrees of quasinormal modes derived by the two approaches increases with the increase of the values of the Gauss-Bonnet coupling constant and multiple number. It shows the correspondence between the shadow and test field in the four-dimensional Einstein-Gauss-Bonnet-Maxwell gravity. The radii of the photon sphere and shadow increase with the decrease of the Gauss-Bonnet coupling constant.
The quasinormal modes of charged and uncharged massive scalar fields and also of charged Dirac fields against the background of a charged spherical black hole endowed with a scalar hair have been investigated. Special emphasis has been given to the case where negative scalar charge dominates over the electric charge of the black hole which mimics an Einstein-Rosen bridge. Except for the complete monotonic behaviour of the damping (imaginary part of the quasinormal mode) against the charge of the black hole as opposed to the existence of a peak for the pure RN case, the qualitative behaviour does not appreciably change due to the presence of scalar hair.