No Arabic abstract
In this article, we construct exact black hole solutions with many horizons (more than number two) in the Einstein-nonlinear electrodynamic theories. In particular, we acquire the explicit expression of nonlinear electrodynamic Lagrangian for the 3-horizon black holes. Then we make the investigations of 3-horizon black holes on the horizons, the null and timelike geodesics, the Love numbers and the thermodynamics.
In this work, we study the existence of regular black holes solutions with multihorizons in general relativity and in some alternative theories of gravity. We consider the coupling between the gravitational theory and nonlinear electrodynamics. The coupling generates modifications in the electromagnetic sector. This paper has as main objective generalize solutions already known from general relativity to the $f(G)$ theory. To do that, we first correct some misprints of the Odintsov and Nojiris work in order to introduce the formalism that will be used in the $f(G)$ gravity. In order to satisfy all field equations, the method to find solutions in alternative theories generates different $f(R)$ and $f(G)$ functions for each solution, where only the nonlinear term of $f(G)$ contributes to the field equations. We also analyze the energy conditions, since it is expected that some must be violated to find regular black holes, and using an auxiliary field, we analyze the nonlinearity of the electromagnetic theory.
In this work we consider black hole solutions to Einstein theory coupled to a nonlinear power-law electromagnetic field with a fixed exponent value. We study the extended phase space thermodynamics in canonical and grand canonical ensembles where the varying cosmological constant plays the role of an effective thermodynamic pressure. We examine thermodynamical phase transitions in such black hols and find that both first and second order phase transitions can occur in the canonical ensemble, while for the grand canonical ensemble the Hawking-Page and second order phase transitions are allowed.
We obtain a class of regular black hole solutions in four-dimensional $f(R)$ gravity, $R$ being the curvature scalar, coupled to a nonlinear electromagnetic source. The metric formalism is used and static spherically symmetric spacetimes are assumed. The resulting $f(R)$ and nonlinear electrodynamics functions are characterized by a one-parameter family of solutions which are generalizations of known regular black holes in general relativity coupled to nonlinear electrodynamics. The related regular black holes of general relativity are recovered when the free parameter vanishes, in which case one has $f(R)propto R$. We analyze the regularity of the solutions and also show that there are particular solutions that violate only the strong energy condition
We study closed photon orbits in spherically-symmetric static solutions of supergravity theories, a Horndeski theory, and a theory of quintessence. These orbits lie in what we shall call a photon sphere (anti-photon sphere) if the orbit is unstable (stable). We show that in all the asymptotically flat solutions we examine that admit a regular event horizon, and whose energy-momentum tensor satisfies the strong energy condition, there is one and only one photon sphere outside the event horizon. We give an example of a Horndeski theory black hole (whose energy-momentum tensor violates the strong energy condition) whose metric admits both a photon sphere and an anti-photon sphere. The uniqueness and non-existence also holds for asymptotically anti-de Sitter solutions in gauged supergravity. The latter also exhibit the projective symmetry that was first discovered for the Schwarzschild-de Sitter metrics: the unparameterised null geodesics are the same as when the cosmological or gauge coupling constant vanishes. We also study the closely related problem of accretion flows by perfect fluids in these metrics. For a radiation fluid, Bondis sonic horizon coincides with the photon sphere. For a general polytropic equation of state this is not the case. Finally we exhibit counterexamples to a conjecture of Hods.
We systematically investigate axisymmetric extremal isolated horizons (EIHs) defined by vanishing surface gravity, corresponding to zero temperature. In the first part, using the Newman-Penrose and GHP formalism we derive the most general metric function for such EIHs in the Einstein-Maxwell theory, which complements the previous result of Lewandowski and Pawlowski. We prove that it depends on 5 independent parameters, namely deficit angles on the north and south poles of a spherical-like section of the horizon, its radius (area), and total electric and magnetic charges of the black hole. The deficit angles and both charges can be separately set to zero. In the second part of our paper, we identify this general axially symmetric solution for EIH with extremal horizons in exact electrovacuum Plebanski-Demianski spacetimes, using the convenient parametrization of this family by Griffiths and Podolsky. They represent all (double aligned) black holes of algebraic type D without a cosmological constant. Apart from a conicity, they depend on 6 physical parameters (mass, Kerr-like rotation, NUT parameter, acceleration, electric and magnetic charges) constrained by the extremality condition. We were able to determine their relation to the EIH geometrical parameters. This explicit identification of type D extremal black holes with a unique form of EIH includes several interesting subclasses, such as accelerating extremely charged Reissner-Nordstrom black hole (C-metric), extremal accelerating Kerr-Newman, accelerating Kerr-NUT, or non-accelerating Kerr-Newman-NUT black holes.