We report the new detection of $^7$Be II in the ultraviolet spectra of V5669 Sgr during its early decline phase ($+24$ and $+28$ d). We identified three blue-shifted absorption systems in our spectra. The first two, referred to as low- and high-velocity components, were noticeably identified among H I Balmer, Na I D, and Fe II whose lower energies of transients are low ($<4$ eV). The third absorption component was identified among N II, He I, and C II lines whose lower energy levels are relatively high (9--21 eV). The absorption lines of $^7$Be II at $3130.583$ {AA}, and $3132.228$ {AA} were identified as the first and second components in our observations. No evidence suggested the existence of Li I at 6708 {AA} in any velocity components. The estimated number density ratio of lithium relative to hydrogen, which was finally produced by this object using the equivalent widths of $^7$Be and Ca II K, $N({rm ^{7}Li})/N({rm H})_{rm final}$ is $4.0pm0.7times10^{-6}$. This value is an order of magnitude lower than the average observed values for classical novae wherein $^7$Be has been detected, and is comparable to the most optimistic value of theoretical predictions.