Do you want to publish a course? Click here

NP-DRAW: A Non-Parametric Structured Latent Variable Model for Image Generation

118   0   0.0 ( 0 )
 Added by Xiaohui Zeng
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we present a non-parametric structured latent variable model for image generation, called NP-DRAW, which sequentially draws on a latent canvas in a part-by-part fashion and then decodes the image from the canvas. Our key contributions are as follows. 1) We propose a non-parametric prior distribution over the appearance of image parts so that the latent variable ``what-to-draw per step becomes a categorical random variable. This improves the expressiveness and greatly eases the learning compared to Gaussians used in the literature. 2) We model the sequential dependency structure of parts via a Transformer, which is more powerful and easier to train compared to RNNs used in the literature. 3) We propose an effective heuristic parsing algorithm to pre-train the prior. Experiments on MNIST, Omniglot, CIFAR-10, and CelebA show that our method significantly outperforms previous structured image models like DRAW and AIR and is competitive to other generic generative models. Moreover, we show that our models inherent compositionality and interpretability bring significant benefits in the low-data learning regime and latent space editing. Code is available at https://github.com/ZENGXH/NPDRAW.



rate research

Read More

This paper introduces the Deep Recurrent Attentive Writer (DRAW) neural network architecture for image generation. DRAW networks combine a novel spatial attention mechanism that mimics the foveation of the human eye, with a sequential variational auto-encoding framework that allows for the iterative construction of complex images. The system substantially improves on the state of the art for generative models on MNIST, and, when trained on the Street View House Numbers dataset, it generates images that cannot be distinguished from real data with the naked eye.
In order to plan a safe maneuver an autonomous vehicle must accurately perceive its environment, and understand the interactions among traffic participants. In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data. In particular, we propose to characterize the joint distribution over future trajectories via an implicit latent variable model. We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene. Coupled with a deterministic decoder, we obtain trajectory samples that are consistent across traffic participants, achieving state-of-the-art results in motion forecasting and interaction understanding. Last but not least, we demonstrate that our motion forecasts result in safer and more comfortable motion planning.
Adversarial examples are fabricated examples, indistinguishable from the original image that mislead neural networks and drastically lower their performance. Recently proposed AdvGAN, a GAN based approach, takes input image as a prior for generating adversaries to target a model. In this work, we show how latent features can serve as better priors than input images for adversary generation by proposing AdvGAN++, a version of AdvGAN that achieves higher attack rates than AdvGAN and at the same time generates perceptually realistic images on MNIST and CIFAR-10 datasets.
208 - Xueyang Fu , Qi Qi , Yue Huang 2018
We propose a simple yet effective deep tree-structured fusion model based on feature aggregation for the deraining problem. We argue that by effectively aggregating features, a relatively simple network can still handle tough image deraining problems well. First, to capture the spatial structure of rain we use dilated convolutions as our basic network block. We then design a tree-structured fusion architecture which is deployed within each block (spatial information) and across all blocks (content information). Our method is based on the assumption that adjacent features contain redundant information. This redundancy obstructs generation of new representations and can be reduced by hierarchically fusing adjacent features. Thus, the proposed model is more compact and can effectively use spatial and content information. Experiments on synthetic and real-world datasets show that our network achieves better deraining results with fewer parameters.
Image-to-Image (I2I) multi-domain translation models are usually evaluated also using the quality of their semantic interpolation results. However, state-of-the-art models frequently show abrupt changes in the image appearance during interpolation, and usually perform poorly in interpolations across domains. In this paper, we propose a new training protocol based on three specific losses which help a translation network to learn a smooth and disentangled latent style space in which: 1) Both intra- and inter-domain interpolations correspond to gradual changes in the generated images and 2) The content of the source image is better preserved during the translation. Moreover, we propose a novel evaluation metric to properly measure the smoothness of latent style space of I2I translation models. The proposed method can be plugged into existing translation approaches, and our extensive experiments on different datasets show that it can significantly boost the quality of the generated images and the graduality of the interpolations.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا