Do you want to publish a course? Click here

CausalCity: Complex Simulations with Agency for Causal Discovery and Reasoning

91   0   0.0 ( 0 )
 Added by Daniel McDuff
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The ability to perform causal and counterfactual reasoning are central properties of human intelligence. Decision-making systems that can perform these types of reasoning have the potential to be more generalizable and interpretable. Simulations have helped advance the state-of-the-art in this domain, by providing the ability to systematically vary parameters (e.g., confounders) and generate examples of the outcomes in the case of counterfactual scenarios. However, simulating complex temporal causal events in multi-agent scenarios, such as those that exist in driving and vehicle navigation, is challenging. To help address this, we present a high-fidelity simulation environment that is designed for developing algorithms for causal discovery and counterfactual reasoning in the safety-critical context. A core component of our work is to introduce textit{agency}, such that it is simple to define and create complex scenarios using high-level definitions. The vehicles then operate with agency to complete these objectives, meaning low-level behaviors need only be controlled if necessary. We perform experiments with three state-of-the-art methods to create baselines and highlight the affordances of this environment. Finally, we highlight challenges and opportunities for future work.



rate research

Read More

For machine agents to successfully interact with humans in real-world settings, they will need to develop an understanding of human mental life. Intuitive psychology, the ability to reason about hidden mental variables that drive observable actions, comes naturally to people: even pre-verbal infants can tell agents from objects, expecting agents to act efficiently to achieve goals given constraints. Despite recent interest in machine agents that reason about other agents, it is not clear if such agents learn or hold the core psychology principles that drive human reasoning. Inspired by cognitive development studies on intuitive psychology, we present a benchmark consisting of a large dataset of procedurally generated 3D animations, AGENT (Action, Goal, Efficiency, coNstraint, uTility), structured around four scenarios (goal preferences, action efficiency, unobserved constraints, and cost-reward trade-offs) that probe key concepts of core intuitive psychology. We validate AGENT with human-ratings, propose an evaluation protocol emphasizing generalization, and compare two strong baselines built on Bayesian inverse planning and a Theory of Mind neural network. Our results suggest that to pass the designed tests of core intuitive psychology at human levels, a model must acquire or have built-in representations of how agents plan, combining utility computations and core knowledge of objects and physics.
Probability trees are one of the simplest models of causal generative processes. They possess clean semantics and -- unlike causal Bayesian networks -- they can represent context-specific causal dependencies, which are necessary for e.g. causal induction. Yet, they have received little attention from the AI and ML community. Here we present concrete algorithms for causal reasoning in discrete probability trees that cover the entire causal hierarchy (association, intervention, and counterfactuals), and operate on arbitrary propositional and causal events. Our work expands the domain of causal reasoning to a very general class of discrete stochastic processes.
154 - Adrian {L}ancucki 2014
Quality of General Game Playing (GGP) matches suffers from slow state-switching and weak knowledge modules. Instantiation and Propositional Networks offer great performance gains over Prolog-based reasoning, but do not scale well. In this publication mGDL, a variant of GDL stripped of function constants, has been defined as a basis for simple reasoning machines. mGDL allows to easily map rules to C++ functions. 253 out of 270 tested GDL rule sheets conformed to mGDL without any modifications; the rest required minor changes. A revised (m)GDL to C++ translation scheme has been reevaluated; it brought gains ranging from 28% to 7300% over YAP Prolog, managing to compile even demanding rule sheets under few seconds. For strengthening game knowledge, spatial features inspired by similar successful techniques from computer Go have been proposed. For they required an Euclidean metric, a small board extension to GDL has been defined through a set of ground atomic sentences. An SGA-based genetic algorithm has been designed for tweaking game parameters and conducting self-plays, so the features could be mined from meaningful game records. The approach has been tested on a small cluster, giving performance gains up to 20% more wins against the baseline UCT player. Implementations of proposed ideas constitutes the core of GGP Spatium - a small C++/Python GGP framework, created for developing compact GGP Players and problem solvers.
304 - Weili Nie , Zhiding Yu , Lei Mao 2020
Humans have an inherent ability to learn novel concepts from only a few samples and generalize these concepts to different situations. Even though todays machine learning models excel with a plethora of training data on standard recognition tasks, a considerable gap exists between machine-level pattern recognition and human-level concept learning. To narrow this gap, the Bongard problems (BPs) were introduced as an inspirational challenge for visual cognition in intelligent systems. Despite new advances in representation learning and learning to learn, BPs remain a daunting challenge for modern AI. Inspired by the original one hundred BPs, we propose a new benchmark Bongard-LOGO for human-level concept learning and reasoning. We develop a program-guided generation technique to produce a large set of human-interpretable visual cognition problems in action-oriented LOGO language. Our benchmark captures three core properties of human cognition: 1) context-dependent perception, in which the same object may have disparate interpretations given different contexts; 2) analogy-making perception, in which some meaningful concepts are traded off for other meaningful concepts; and 3) perception with a few samples but infinite vocabulary. In experiments, we show that the state-of-the-art deep learning methods perform substantially worse than human subjects, implying that they fail to capture core human cognition properties. Finally, we discuss research directions towards a general architecture for visual reasoning to tackle this benchmark.
Spatial-temporal reasoning is a challenging task in Artificial Intelligence (AI) due to its demanding but unique nature: a theoretic requirement on representing and reasoning based on spatial-temporal knowledge in mind, and an applied requirement on a high-level cognitive system capable of navigating and acting in space and time. Recent works have focused on an abstract reasoning task of this kind -- Ravens Progressive Matrices (RPM). Despite the encouraging progress on RPM that achieves human-level performance in terms of accuracy, modern approaches have neither a treatment of human-like reasoning on generalization, nor a potential to generate answers. To fill in this gap, we propose a neuro-symbolic Probabilistic Abduction and Execution (PrAE) learner; central to the PrAE learner is the process of probabilistic abduction and execution on a probabilistic scene representation, akin to the mental manipulation of objects. Specifically, we disentangle perception and reasoning from a monolithic model. The neural visual perception frontend predicts objects attributes, later aggregated by a scene inference engine to produce a probabilistic scene representation. In the symbolic logical reasoning backend, the PrAE learner uses the representation to abduce the hidden rules. An answer is predicted by executing the rules on the probabilistic representation. The entire system is trained end-to-end in an analysis-by-synthesis manner without any visual attribute annotations. Extensive experiments demonstrate that the PrAE learner improves cross-configuration generalization and is capable of rendering an answer, in contrast to prior works that merely make a categorical choice from candidates.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا