Do you want to publish a course? Click here

First 3D vector tracking of helium recoils for fast neutron measurements at SuperKEKB

111   0   0.0 ( 0 )
 Added by Michael Hedges
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results from the first deployment of novel, high definition, compact gas Time Projection Chambers (TPCs) with pixel chip readout as part of the BEAST II beam background measurement project at SuperKEKB. The TPCs provide detailed 3D imaging of ionization from neutron-induced nuclear recoils in a helium and carbon dioxide target gas mixture at standard temperature and pressure. We find excellent electron background rejection, leading to background-free nuclear recoil measurements above 50 keVee, despite the extreme high-background environment. We measure an angular resolution better than 20{deg} for recoil tracks longer than 1.7 mm, corresponding to an average ionization energy of ~100 keVee. We also obtain the 3D vector direction of helium recoils by utilizing charge profile measurements along the recoil axis, with a correct head/tail assignment efficiency of approximately 80%. With this performance, we present comparisons between measured and simulated event rates, recoil energy spectra, and directional distributions originating from beam-gas and Touschek beam losses at SuperKEKB. We utilize head/tail recognition to distinguish neutron components travelling with positive radial velocity in the Belle II coordinate system from those with opposite directionality. Finally, we present a novel method of discriminating beam-gas interactions from Touschek beam losses that can eliminate the need for dedicated accelerator runs for background measurements. This method is still statistics-limited. However, future studies should be able to verify this method, which in turn could lead to neutron background analysis runs symbiotic with normal Belle II operation. The capabilities demonstrated here also suggest that high definition recoil imaging in gas TPCs is applicable to low energy, low-background experiments, such as directional dark matter searches.



rate research

Read More

The high design luminosity of the SuperKEKB electron-positron collider is expected to result in challenging levels of beam-induced backgrounds in the interaction region. Properly simulating and mitigating these backgrounds is critical to the success of the Belle~II experiment. We report on measurements performed with a suite of dedicated beam background detectors, collectively known as BEAST II, during the so-called Phase 1 commissioning run of SuperKEKB in 2016, which involved operation of both the high energy ring (HER) of 7 GeV electrons as well as the low energy ring (LER) of 4 GeV positrons. We describe the BEAST II detector systems, the simulation of beam backgrounds, and the measurements performed. The measurements include standard ones of dose rates versus accelerator conditions, and more novel investigations, such as bunch-by-bunch measurements of injection backgrounds and measurements sensitive to the energy spectrum and angular distribution of fast neutrons. We observe beam-gas, Touschek, beam-dust, and injection backgrounds. We do not observe significant synchrotron radiation, as expected. Measured LER beam-gas backgrounds and Touschek backgrounds in both rings are slightly elevated, on average three times larger than the levels predicted by simulation. HER beam-gas backgrounds are on on average two orders of magnitude larger than predicted. Systematic uncertainties and channel-to-channel variations are large, so that these excesses constitute only 1-2 sigma level effects. Neutron background rates are higher than predicted and should be studied further. We will measure the remaining beam background processes, due to colliding beams, in the imminent commissioning Phase 2. These backgrounds are expected to be the most critical for Belle II, to the point of necessitating replacement of detector components during the Phase 3 (full-luminosity) operation of SuperKEB.
Anisotropic scintillators can offer a unique possibility to exploit the so-called directionality approach in order to investigate the presence of those Dark Matter (DM) candidates inducing nuclear recoils. In fact, their use can overcome the difficulty of detecting extremely short nuclear recoil traces. In this paper we present recent measurements performed on the anisotropic response of a ZnWO$_4$ crystal scintillator to nuclear recoils, in the framework of the ADAMO project. The anisotropic features of the ZnWO$_4$ crystal scintillators were initially measured with $alpha$ particles; those results have been also confirmed by the additional measurements presented here. The experimental nuclear recoil data were obtained by using a neutron generator at ENEA-CASACCIA and neutron detectors to tag the scattered neutrons; in particular, the quenching factor values for nuclear recoils along different crystallographic axes have been determined for three different neutron scattering angles (i.e. nuclear recoils energies). From these measurements, the anisotropy of the light response for nuclear recoils in the ZnWO$_4$ crystal scintillator has been determined at 5.4 standard deviations.
We report on measurements of beam backgrounds during the first commissioning phase of the SuperKEKB collider in 2016, performed with the plastic scintillator and silicon photomultiplier-based CLAWS detector system. The sub-nanosecond time resolution and single particle detection capability of the sensors allow bunch-by-bunch measurements, enable CLAWS to perform a novel time resolved analysis of beam backgrounds, and make the system uniquely suited for the study of injection backgrounds. We present measurements of various aspects of regular beam background and injection backgrounds which include time structure and decay behavior of injection backgrounds, hit-energy spectra and overall background rates. These measurements show that the elevated background rates following an injection generally last for several milliseconds, with the majority of the background particles typically observed within the first 500 us. The injection backgrounds exhibit pronounced patterns in time, connected to betatron and synchrotron oscillations in the accelerator rings. The frequencies of these patterns are determined from detector data.
Thin pad detectors made from 75 $mu$m thick epitaxial silicon on low resistivity substrate were irradiated with reactor neutrons to fluences from 2.5$times 10^{16}$ n/cm$^2$ to 1$times 10^{17}$ n/cm$^2$. Edge-TCT measurements showed that the active detector thickness is limited to the epitaxial layer and does not extend into the low resistivity substrate even after the highest fluence. Detector current was measured under reverse and forward bias. The forward current was higher than the reverse at the same voltage but the difference gets smaller with increasing fluence. Rapid increase of current (breakdown) above ~ 700 V under reverse bias was observed. An annealing study at 60$^circ$C was made to 1200 minutes of accumulated annealing time. It showed that the reverse current anneals with similar time constants as measured at lower fluences. A small increase of forward current due to annealing was seen. Collected charge was measured with electrons from $^{90}$Sr source in forward and reverse bias configurations. Under reverse bias the collected charge increased linearly with bias voltage up to 6000 electrons at 2.5$times 10^{16}$ n/cm$^2$ and 3000 electrons at 1$times 10^{17}$ n/cm$^2$. Rapid increase of noise was measured above $sim$ 700 V reverse bias due to breakdown resulting in worse S/N ratio. At low bias voltages slightly more charge is measured under forward bias compared to reverse. However better S/N is achieved under reverse bias. Effective trapping times were estimated from charge collection measurements under forward bias showing that at high fluences they are much longer than values extrapolated from low fluence measurements - at 1$times 10^{17}$ n/cm$^2$ a factor of 6 larger value was measured.
A method of measurements of the environmental neutron background at the Baksan Neutrino Observatory of the INR RAS are described. Measurements were done by using of a proportional counter filled with mixture of Ar(2 at)+$^3$He(4 at). The results obtained at the surface and the underground laboratory of the BNO INR RAS are presented. It is shown that a neutron background in the underground laboratory at the 4900 m w.e. depth is decreased by $sim 260$ times without any special shield in a comparison with the Earth surface. A neutron flux density in the 5-1323.5~cm air height region is constant within the determination error and equal to $(7.1pm0.1_{rm{stat}}pm0.3_{rm{syst}})times10^{-3}$ s$^{-1}cdot$cm$^{-2}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا