Robust optical frequency transfer in a noisy urban fiber network


Abstract in English

Optical fibers have been recognized as one of the most promising host material for high phase coherence optical frequency transfer over thousands of kilometers. In the pioneering work, the active phase noise cancellation (ANC) technique has been widely used for suppressing the fiber phase noise introduced by the environmental perturbations, in which an ideal phase detector with high resolution and unlimited detection range is needed to extract the fiber phase noise, in particular for noisy fiber links. We demonstrate the passive phase noise cancellation (PNC) technique without the need of phase detector could be preferable for noisy fiber links. To avoid the effect of the radio frequency (RF) from the time base at the local site in the conventional active or passive phase noise cancellation techniques, here we introduce a fiber-pigtailed acousto-optic modulator (AOM) with two diffraction order outputs (0 and +1 order) with properly allocating the AOM-driving frequencies allowing to cancel the time base effect. Using this technique, we demonstrate transfer of coherent light through a 260 km noisy urban fiber link. The results show the effect of the RF reference can be successfully removed. After being passively compensated, {we demonstrate a fractional frequency instability of $4.9times10^{-14}$ at the integration time of 1 s and scales down to $10^{-20}$ level at 10,000 s in terms of modified Allan deviation over the 260 km noisy urban fiber link}. The frequency uncertainty of the retrieved light after transferring through this noise-compensated fiber link relative to that of the input light achieves $(0.41pm4.7)times10^{-18}$. The proposed technique opens a way to a broad distribution of an ultrastable frequency reference with high coherence without any effects coming from the RF reference and enables a wide range of applications beyond metrology over fiber networks.

Download