Do you want to publish a course? Click here

Non-Autoregressive TTS with Explicit Duration Modelling for Low-Resource Highly Expressive Speech

212   0   0.0 ( 0 )
 Added by Raahil Shah
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Whilst recent neural text-to-speech (TTS) approaches produce high-quality speech, they typically require a large amount of recordings from the target speaker. In previous work, a 3-step method was proposed to generate high-quality TTS while greatly reducing the amount of data required for training. However, we have observed a ceiling effect in the level of naturalness achievable for highly expressive voices when using this approach. In this paper, we present a method for building highly expressive TTS voices with as little as 15 minutes of speech data from the target speaker. Compared to the current state-of-the-art approach, our proposed improvements close the gap to recordings by 23.3% for naturalness of speech and by 16.3% for speaker similarity. Further, we match the naturalness and speaker similarity of a Tacotron2-based full-data (~10 hours) model using only 15 minutes of target speaker data, whereas with 30 minutes or more, we significantly outperform it. The following improvements are proposed: 1) changing from an autoregressive, attention-based TTS model to a non-autoregressive model replacing attention with an external duration model and 2) an additional Conditional Generative Adversarial Network (cGAN) based fine-tuning step.



rate research

Read More

102 - Hui Lu , Zhiyong Wu , Xixin Wu 2021
This paper describes a variational auto-encoder based non-autoregressive text-to-speech (VAENAR-TTS) model. The autoregressive TTS (AR-TTS) models based on the sequence-to-sequence architecture can generate high-quality speech, but their sequential decoding process can be time-consuming. Recently, non-autoregressive TTS (NAR-TTS) models have been shown to be more efficient with the parallel decoding process. However, these NAR-TTS models rely on phoneme-level durations to generate a hard alignment between the text and the spectrogram. Obtaining duration labels, either through forced alignment or knowledge distillation, is cumbersome. Furthermore, hard alignment based on phoneme expansion can degrade the naturalness of the synthesized speech. In contrast, the proposed model of VAENAR-TTS is an end-to-end approach that does not require phoneme-level durations. The VAENAR-TTS model does not contain recurrent structures and is completely non-autoregressive in both the training and inference phases. Based on the VAE architecture, the alignment information is encoded in the latent variable, and attention-based soft alignment between the text and the latent variable is used in the decoder to reconstruct the spectrogram. Experiments show that VAENAR-TTS achieves state-of-the-art synthesis quality, while the synthesis speed is comparable with other NAR-TTS models.
Although neural end-to-end text-to-speech models can synthesize highly natural speech, there is still room for improvements to its efficiency and naturalness. This paper proposes a non-autoregressive neural text-to-speech model augmented with a variational autoencoder-based residual encoder. This model, called emph{Parallel Tacotron}, is highly parallelizable during both training and inference, allowing efficient synthesis on modern parallel hardware. The use of the variational autoencoder relaxes the one-to-many mapping nature of the text-to-speech problem and improves naturalness. To further improve the naturalness, we use lightweight convolutions, which can efficiently capture local contexts, and introduce an iterative spectrogram loss inspired by iterative refinement. Experimental results show that Parallel Tacotron matches a strong autoregressive baseline in subjective evaluations with significantly decreased inference time.
This paper proposes VARA-TTS, a non-autoregressive (non-AR) text-to-speech (TTS) model using a very deep Variational Autoencoder (VDVAE) with Residual Attention mechanism, which refines the textual-to-acoustic alignment layer-wisely. Hierarchical latent variables with different temporal resolutions from the VDVAE are used as queries for residual attention module. By leveraging the coarse global alignment from previous attention layer as an extra input, the following attention layer can produce a refined version of alignment. This amortizes the burden of learning the textual-to-acoustic alignment among multiple attention layers and outperforms the use of only a single attention layer in robustness. An utterance-level speaking speed factor is computed by a jointly-trained speaking speed predictor, which takes the mean-pooled latent variables of the coarsest layer as input, to determine number of acoustic frames at inference. Experimental results show that VARA-TTS achieves slightly inferior speech quality to an AR counterpart Tacotron 2 but an order-of-magnitude speed-up at inference; and outperforms an analogous non-AR model, BVAE-TTS, in terms of speech quality.
This paper introduces a multi-scale speech style modeling method for end-to-end expressive speech synthesis. The proposed method employs a multi-scale reference encoder to extract both the global-scale utterance-level and the local-scale quasi-phoneme-level style features of the target speech, which are then fed into the speech synthesis model as an extension to the input phoneme sequence. During training time, the multi-scale style model could be jointly trained with the speech synthesis model in an end-to-end fashion. By applying the proposed method to style transfer task, experimental results indicate that the controllability of the multi-scale speech style model and the expressiveness of the synthesized speech are greatly improved. Moreover, by assigning different reference speeches to extraction of style on each scale, the flexibility of the proposed method is further revealed.
Speech separation has been shown effective for multi-talker speech recognition. Under the ad hoc microphone array setup where the array consists of spatially distributed asynchronous microphones, additional challenges must be overcome as the geometry and number of microphones are unknown beforehand. Prior studies show, with a spatial-temporalinterleaving structure, neural networks can efficiently utilize the multi-channel signals of the ad hoc array. In this paper, we further extend this approach to continuous speech separation. Several techniques are introduced to enable speech separation for real continuous recordings. First, we apply a transformer-based network for spatio-temporal modeling of the ad hoc array signals. In addition, two methods are proposed to mitigate a speech duplication problem during single talker segments, which seems more severe in the ad hoc array scenarios. One method is device distortion simulation for reducing the acoustic mismatch between simulated training data and real recordings. The other is speaker counting to detect the single speaker segments and merge the output signal channels. Experimental results for AdHoc-LibiCSS, a new dataset consisting of continuous recordings of concatenated LibriSpeech utterances obtained by multiple different devices, show the proposed separation method can significantly improve the ASR accuracy for overlapped speech with little performance degradation for single talker segments.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا