Retrospective Interference Regeneration Schemes for Relay-Aided K-user MIMO Downlink Networks


Abstract in English

To accommodate the explosive growth of the Internet-of-Things (IoT), incorporating interference alignment (IA) into existing multiple access (MA) schemes is under investigation. However, when it is applied in MIMO networks to improve the system compacity, the incoming problem regarding information delay arises which does not meet the requirement of low-latency. Therefore, in this paper, we first propose a new metric, degree of delay (DoD), to quantify the issue of information delay, and characterize DoD for three typical transmission schemes, i.e., TDMA, beamforming based TDMA (BD-TDMA), and retrospective interference alignment (RIA). By analyzing DoD in these schemes, its value mainly depends on three factors, i.e., delay sensitive factor, size of data set, and queueing delay slot. The first two reflect the relationship between quality of service (QoS) and information delay sensitivity, and normalize time cost for each symbol, respectively. These two factors are independent of the transmission schemes, and thus we aim to reduce the queueing delay slot to improve DoD. Herein, three novel joint IA schemes are proposed for MIMO downlink networks with different number of users. That is, hybrid antenna array based partial interference elimination and retrospective interference regeneration scheme (HAA-PIE-RIR), HAA based improved PIE and RIR scheme (HAA-IPIE-RIR), and HAA based cyclic interference elimination and RIR scheme (HAA-CIE-RIR). Based on the first scheme, the second scheme extends the application scenarios from $2$-user to $K$-user while causing heavy computational burden. The third scheme relieves such computational burden, though it has certain degree of freedom (DoF) loss due to insufficient utilization of space resources.

Download