Rational and Quasi-Permutation Representations of Holomorph of Cyclic p-Groups


Abstract in English

For a finite group $G$, let $p(G)$ denote the minimal degree of a faithful permutation representation of $G$. The minimal degree of a faithful representation of $G$ by quasi-permutation matrices over the fields $mathbb{C}$ and $mathbb{Q}$ are denoted by $c(G)$ and $q(G)$ respectively. In general $c(G)leq q(G)leq p(G)$ and either inequality may be strict. In this paper, we study the representation theory of the group $G =$ Hol$(C_{p^{n}})$, which is the holomorph of a cyclic group of order $p^n$, $p$ a prime. This group is metacyclic when $p$ is odd and metabelian but not metacyclic when $p=2$ and $n geq 3$. We explicitly describe the set of all isomorphism types of irreducible representations of $G$ over the field of complex numbers $mathbb{C}$ as well as the isomorphism types over the field of rational numbers $mathbb{Q}$. We compute the Wedderburn decomposition of the rational group algebra of $G$. Using the descriptions of the irreducible representations of $G$ over $mathbb{C}$ and over $mathbb{Q}$, we show that $c(G) = q(G) = p(G) = p^n$ for any prime $p$. The proofs are often different for the case of $p$ odd and $p=2$.

Download