Do you want to publish a course? Click here

Polymers surface interactions with molten iron: a theoretical study

74   0   0.0 ( 0 )
 Added by Hussein Assadi Dr
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Environmental concerns are the chief drive for more innovative recycling techniques for end-of-life polymeric products. One attractive option is taking advantage of C and H content of polymeric waste in steelmaking industry. In this work, we examined the interaction of two high production polymers, i.e., polyurethane and polysulfide with molten iron using ab initio molecular dynamics simulation. We demonstrate that both polymers can be used as carburizers for molten iron. Additionally, we found that light weight H$_2$ and CH$_x$ molecules were released as by-products of the polymer-molten iron interaction. The outcomes of this study will have applications in the carburization of molten iron during ladle metallurgy and waste plastic injection in electric arc furnace.

rate research

Read More

64 - Zhiwei Bian 2021
High purity iron is obtained from vanadium-titanium magnetite (VTM) by one-step coal-based direct reduction-smelting process with coal as reductant and sodium carbonate (Na2CO3) as additives. Industrial experiments show that the process of treating molten iron with a large amount of Na2CO3 is effective in removing titanium from molten iron. However, the studies are rarely conducted in thermodynamic relationship between titanium and other components of molten iron, under the condition of a large amount of Na2CO3 additives. In this study, through the thermodynamic database software Factsage8.0, the effects of melting temperature, sodium content and oxygen content on the removal of titanium from molten iron are studied. The results of thermodynamic calculation show that the removal of titanium from molten iron needs to be under the condition of oxidation, and the temperature should be below the critical temperature of titanium removal (the highest temperature at which titanium can be removed). Relatively low temperature and high oxygen content contribute to the removal of titanium from molten iron. The high oxygen content is conducive to the simultaneous removal of titanium and phosphorus from molten iron. In addition, from a thermodynamic point of view, excessive sodium addition inhibits the removal of titanium from molten iron.
Yttrium Iron Garnet is the ubiquitous magnetic insulator used for studying pure spin currents. The exchange constants reported in the literature vary considerably between different experiments and fitting procedures. Here we calculate them from first-principles. The local Coulomb correction (U - J) of density functional theory is chosen such that the parameterized spin model reproduces the experimental Curie temperature and a large electronic band gap, ensuring an insulating phase. The magnon spectrum calculated with our parameters agrees reasonably well with that measured by neutron scattering. A residual disagreement about the frequencies of optical modes indicates the limits of the present methodology.
126 - K. F. Laneri 2002
This paper presents an experimental and theoretical study of the distribution of carbon atoms in the octahedral interstitial sites of the face-centered cubic (fcc) phase of the iron-carbon system. The experimental part of the work consists of Mossbauer measurements in Fe-C alloys with up to about 12 atomic percent C, which are interpreted in terms of two alternative models for the distribution of C atoms in the interstitial sites. The theoretical part combines an analysis of the chemical potential of C based on the quasichemical approximation to the statistical mechanics of interstitial solutions, with three-dimensional Monte Carlo simulations. The latter were performed by assuming a gas like mixture of C atoms and vacancies (Va) in the octahedral interstitial sites. The number of C-C, C-Va and Va-Va pairs calculated using Monte Carlo simulations are compared with those given by the quasichemical model. Furthermore, the relative fraction of the various Fe environments were calculated and compared with those extracted from the Mossbauer spectra. The simulations reproduce remarkably well the relative fractions obtained assuming the Fe(8)C(1-y) model for Mossbauer spectra, which includes some blocking of the nearest neighbour interstitial sites by a C atom. With the new experimental and theoretical information obtained in the present study, a critical discussion is reported of the extent to which such blocking effect is accounted for in current thermodynamic models of the Fe-C fcc phase. Abstract PACS Codes: 2.70.Uu, 76.
Surface terminations for 2D MXene have dramatic impacts on physicochemical properties. The commonly etching methods usually introduce -F surface termination or metallic into MXene. Here, we present a new molten salt assisted electrochemical etching (MS-E-etching) method to synthesize fluorine-free Ti3C2Tx without metallics. Due to performing electrons as reaction agent, the cathode reduction and anode etching can be spatially isolated, thus no metallic presents in Ti3C2Tx product. Moreover, the Tx surface terminations can be directly modified from -Cl to -O and/or -S in one pot process. The obtained -O terminated MXenes exhibited capacitance of 225 and 205 F/g at 1 and 10 A/g, confirming high reversibility of redox reactions. This one-pot process greatly shortens the modification procedures as well as enriches the surface functional terminations. More importantly, the recovered salt after synthesis can be recycled and reused, which brands it as a green sustainable method.
Metal oxyfluorides constitute a broad group of chemical compounds with rich spectrum of crystal structures and properties. Here we predict, based on evolutionary algorithm approach, the crystal structure and selected properties of Ag$_2$OF$_2$. This system may be considered as the 1 to 1 adduct of AgF$_2$ (i.e. an antiferromagnetic charge transfer positive U insulator) and AgO (i.e. a disproportionated negative U insulator). We analyze oxidation states of silver in each structure, possible magnetic interactions, as well as energetic stability. Prospect is outlined for synthesis of polytypes of interest using diverse synthetic approaches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا