Do you want to publish a course? Click here

Kinematics of Antlia 2 and Crater 2 from The Southern Stellar Stream Spectroscopic Survey (S5)

111   0   0.0 ( 0 )
 Added by Alexander Ji
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present new spectroscopic observations of the diffuse Milky Way satellite galaxies Antlia 2 and Crater 2, taken as part of the Southern Stellar Stream Spectroscopic Survey (S5). The new observations approximately double the number of confirmed member stars in each galaxy and more than double the spatial extent of spectroscopic observations in Antlia 2. A full kinematic analysis, including Gaia EDR3 proper motions, detects a clear velocity gradient in Antlia 2 and a tentative velocity gradient in Crater 2. The velocity gradient magnitudes and directions are consistent with particle stream simulations of tidal disruption. Furthermore, the orbit and kinematics of Antlia 2 require a model that includes the reflex motion of the Milky Way induced by the Large Magellanic Cloud. We also find that Antlia 2s metallicity was previously overestimated, so it lies on the empirical luminosity-metallicity relation and is likely only now experiencing substantial stellar mass loss. This low stellar mass loss contrasts with current dynamical models of Antlia 2s size and velocity dispersion, which require it to have lost more than 90% of its stars to tides. Overall, the new kinematic measurements support a tidal disruption scenario for the origin of these large and extended dwarf spheroidal galaxies.



rate research

Read More

We present high-resolution Magellan/MIKE spectroscopy of 42 red giant stars in seven stellar streams confirmed by the Southern Stellar Stream Spectroscopic Survey (S5): ATLAS, Aliqa Uma, Chenab, Elqui, Indus, Jhelum, and Phoenix. Abundances of 30 elements have been derived from over 10,000 individual line measurements or upper limits using photometric stellar parameters and a standard LTE analysis. This is currently the most extensive set of element abundances for stars in stellar streams. Three streams (ATLAS, Aliqa Uma, and Phoenix) are disrupted metal-poor globular clusters, although only weak evidence is seen for the light element anticorrelations commonly observed in globular clusters. Four streams (Chenab, Elqui, Indus, and Jhelum) are disrupted dwarf galaxies, and their stars display abundance signatures that suggest progenitors with stellar masses ranging from $10^6-10^7 M_odot$. Extensive description is provided for the analysis methods, including the derivation of a new method for including the effect of stellar parameter correlations on each stars abundance and uncertainty. This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.
We introduce the Southern Stellar Stream Spectroscopy Survey (${S}^5$), an on-going program to map the kinematics and chemistry of stellar streams in the Southern Hemisphere. The initial focus of ${S}^5$ has been spectroscopic observations of recently identified streams within the footprint of the Dark Energy Survey (DES), with the eventual goal of surveying streams across the entire southern sky. Stellar streams are composed of material that has been tidally striped from dwarf galaxies and globular clusters and hence are excellent dynamical probes of the gravitational potential of the Milky Way, as well as providing a detailed snapshot of its accretion history. Observing with the 3.9-m Anglo-Australian Telescopes 2-degree-Field fibre positioner and AAOmega spectrograph, and combining the precise photometry of DES DR1 with the superb proper motions from $Gaia$ DR2, allows us to conduct an efficient spectroscopic survey to map these stellar streams. So far ${S}^5$ has mapped 9 DES streams and 3 streams outside of DES; the former are the first spectroscopic observations of these recently discovered streams. In addition to the stream survey, we use spare fibres to undertake a Milky Way halo survey and a low-redshift galaxy survey. This paper presents an overview of the ${S}^5$ program, describing the scientific motivation for the survey, target selection, observation strategy, data reduction and survey validation. Finally, we describe early science results on stellar streams and Milky Way halo stars drawn from the survey. Updates on ${S}^5$, including future public data release, can be found at url{http://s5collab.github.io}.
We present the kinematic and chemical profiles of red giant stars observed by the APOGEE-2 survey in the direction of the Jhelum stellar stream, a Milky Way substructure located in the inner halo of the Milky Way at a distance from the Sun of $approx$ 13 kpc. From the six APOGEE-2 Jhelum pointings, we isolate stars with log($g$) $<$ 3.5, leaving a sample of 289 red giant stars. From this sample of APOGEE giants, we identified seven stars that are consistent with the astrometric signal from $Gaia$ DR2 for this stream. Of these seven, one falls onto the RGB along the same sequence as the Jhelum stars presented by cite{ji20}. This new Jhelum member has [Fe/H]=-2.2 and is at the tip of the red giant branch. By selecting high orbital eccentricity, metal-rich stars, we identify red giants in our APOGEE sample that are likely associated with the $Gaia$-Enceladus-Sausage (GES) merger. We compare the abundance profiles of the Jhelum stars and GES stars and find similar trends in $alpha$-elements, as expected for low-metallicity populations. However, we find that the orbits for GES and Jhelum stars are not generally consistent with a shared origin. The chemical abundances for the APOGEE Jhelum star and other confirmed members of the stream are similar to stars in known stellar streams and thus are consistent with an accreted dwarf galaxy origin for the progenitor of the stream, although we cannot rule out a globular cluster origin.
Mergers and tidal interactions between massive galaxies and their dwarf satellites are a fundamental prediction of the Lambda-Cold Dark Matter cosmology. These events are thought to influence galaxy evolution throughout cosmic history and to provide important observational diagnostics of structure formation. Stellar streams in the Local Group are spectacular evidence for satellite disruption at the present day. However, constructing a significant sample of tidal streams beyond our immediate cosmic neighborhood has proven a daunting observational challenge and their potential for deepening our understanding of galaxy formation has yet to be realized. Over the last decade, the Stellar Tidal Stream Survey has obtained deep, wide-field images of nearby Milky-Way analog galaxies with a network of robotic amateur telescopes, revealing for the first time an assortment of large-scale tidal structures in their halos. I discuss the main results of this project and future plans for performing dynamical studies of the discovered streams.
240 - J. K. Zhao , X. H. Ye , H. Wu 2020
We constructed a sample of 13,798 stars with $Trm_{eff}$, log $g$, [Fe/H], radial velocity, proper motions and parallaxes from LAMOST DR5 and Gaia DR2 in the LAMOST Complete Spectroscopic Survey of Pointing Area (LaCoSSPAr) at the Southern Galactic Cap consisting of areas A and B. Using the distributions in both proper motions and radial velocity, we detected very significant overdensities in these two areas. These substructures most likely are portions of Sagittarius (Sgr) stream. With the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, 220 candidates stream members were identified. Based upon distance to the Sun and published models, 106 of these stars are likely to be the members of the Sgr stream. The abundance pattern of these members using [$alpha$/Fe] from Xiang et al. were found to be similar to Galactic field stars with [Fe/H] $<$ -1.5 and deficient to Milky Way populations at similar metallicities with [Fe/H] $>$ -1.0. No vertical and only small radial gradients in metallicity along the orbit of Sgr stream were found in our Sgr stream candidates.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا