Do you want to publish a course? Click here

An inverse random source problem for the biharmonic wave equation

84   0   0.0 ( 0 )
 Added by Xu Wang
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

This paper is concerned with an inverse source problem for the stochastic biharmonic operator wave equation. The driven source is assumed to be a microlocally isotropic Gaussian random field with its covariance operator being a classical pseudo-differential operator. The well-posedness of the direct problem is examined in the distribution sense and the regularity of the solution is discussed for the given rough source. For the inverse problem, the strength of the random source, involved in the principal symbol of its covariance operator, is shown to be uniquely determined by a single realization of the magnitude of the wave field averaged over the frequency band with probability one. Numerical experiments are presented to illustrate the validity and effectiveness of the proposed method for the case that the random source is the white noise.



rate research

Read More

The main aim of this paper is to solve an inverse source problem for a general nonlinear hyperbolic equation. Combining the quasi-reversibility method and a suitable Carleman weight function, we define a map of which fixed point is the solution to the inverse problem. To find this fixed point, we define a recursive sequence with an arbitrary initial term by the same manner as in the classical proof of the contraction principle. Applying a Carleman estimate, we show that the sequence above converges to the desired solution with the exponential rate. Therefore, our new method can be considered as an analog of the contraction principle. We rigorously study the stability of our method with respect to noise. Numerical examples are presented.
We prove logarithmic stability in the parabolic inverse problem of determining the space-varying factor in the source, by a single partial boundary measurement of the solution to the heat equation in an infinite closed waveguide, with homogeneous initial and Dirichlet data.
This paper is concerned with the inverse problem on determining an orbit of the moving source in a fractional diffusion(-wave) equations in a connected bounded domain of $mathbb R^d$ or in the whole space $mathbb R^d$. Based on a newly established fractional Duhamels principle, we derive a Lipschitz stability estimate in the case of a localized moving source by the observation data at $d$ interior points. The uniqueness for the general non-localized moving source is verified with additional data of more interior observations.
We study the inverse problem of determining the magnetic field and the electric potential entering the Schrodinger equation in an infinite 3D cylindrical domain, by Dirichlet-to-Neumann map. The cylindrical domain we consider is a closed waveguide in the sense that the cross section is a bounded domain of the plane. We prove that the knowledge of the Dirichlet-to-Neumann map determines uniquely, and even Holder-stably, the magnetic field induced by the magnetic potential and the electric potential. Moreover, if the maximal strength of both the magnetic field and the electric potential, is attained in a fixed bounded subset of the domain, we extend the above results by taking finitely extended boundary observations of the solution, only.
In this article, stability estimates are given for the determination of the zeroth-order bounded perturbations of the biharmonic operator when the boundary Neumann measurements are made on the whole boundary and on slightly more than half the boundary, respectively. For the case of measurements on the whole boundary, the stability estimates are of ln-type and for the case of measurements on slightly more than half of the boundary, we derive estimates that are of ln ln-type.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا