Do you want to publish a course? Click here

Thermoelectric response from grain boundaries and lattice distortions in crystalline gold devices

139   0   0.0 ( 0 )
 Added by Douglas Natelson
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The electronic Seebeck response in a conductor involves the energy-dependent mean free path of the charge carriers and is affected by crystal structure, scattering from boundaries and defects, and strain. Previous photothermoelectric (PTE) studies have suggested that the thermoelectric properties of polycrystalline metal nanowires are related to grain structure, though direct evidence linking crystal microstructure to the PTE response is difficult to elucidate. Here, we show that room temperature scanning PTE measurements are sensitive probes that can detect subtle changes in the local Seebeck coefficient of gold tied to the underlying defects and strain that mediate crystal deformation. This connection is revealed through a combination of scanning PTE and electron microscopy measurements of single crystal and bicrystal gold microscale devices. Unexpectedly, the photovoltage maps strongly correlate with gradually varying crystallographic misorientations detected by electron backscatter diffraction. The effects of individual grain boundaries and differing grain orientations on the PTE signal are minimal. This scanning PTE technique shows promise for identifying minor structural distortions in nanoscale materials and devices.



rate research

Read More

Grain boundaries (GBs) are structural imperfections that typically degrade the performance of materials. Here we show that dislocations and GBs in two-dimensional (2D) metal dichalcogenides MX2 (M = Mo, W; X = S, Se) can actually improve the material by giving it a qualitatively new physical property: magnetism. The dislocations studied all have a substantial magnetic moment of ~1 Bohr magneton. In contrast, dislocations in other well-studied 2D materials are typically non-magnetic. GBs composed of pentagon-heptagon pairs interact ferromagnetically and transition from semiconductor to half-metal or metal as a function of tilt angle and/or doping level. When the tilt angle exceeds 47{deg} the structural energetics favor square-octagon pairs and the GB becomes an antiferromagnetic semiconductor. These exceptional magnetic properties arise from an interplay of dislocation-induced localized states, doping, and locally unbalanced stoichiometry. Purposeful engineering of topological GBs may be able to convert MX2 into a promising 2D magnetic semiconductor.
We discuss thermal rectification and thermoelectric energy conversion from the perspective of nonequilibrium statistical mechanics and dynamical systems theory. After preliminary considerations on the dynamical foundations of the phenomenological Fourier law in classical and quantum mechanics, we illustrate ways to control the phononic heat flow and design thermal diodes. Finally, we consider the coupled transport of heat and charge and discuss several general mechanisms for optimizing the figure of merit of thermoelectric efficiency.
With numerical simulations of the mW model of water, we investigate the energetic stability of crystalline clusters for both Ice I (cubic and hexagonal ice) and for the metastable Ice 0 phase as a function of the cluster size. Under a large variety of forming conditions, we find that the most stable cluster changes as a function of size: at small sizes the Ice 0 phase produces the most stable clusters, while at large sizes there is a crossover to Ice I clusters. We further investigate the growth of crystalline clusters with the seeding technique and study the growth patterns of different crystalline clusters. While energetically stable at small sizes, the growth of metastable phases (cubic and Ice 0) is hindered by the formation of coherent grain boundaries. A five-fold symmetric twin boundary for cubic ice, and a newly discovered coherent grain boundary in Ice 0, that promotes cross nucleation of cubic ice. Our work reveals that different local structures can compete with the stable phase in mW water, and that the low energy cost of particular grain boundaries might play an important role in polymorph selection.
In the paper we predict a distinctive change of magnetic properties and considerable increase of the Curie temperature caused by the strain fields of grain boundaries in ferromagnetic films. It is shown that a sheet of spontaneous magnetization may arise along a grain boundary at temperatures greater than the bulk Curie temperature. The temperature dependence and space distribution of magnetization in a ferromagnetic film with grain boundaries are calculated. We found that $45^circ$ grain boundaries can produce long-range strain fields that results in the width of the magnetic sheet along the boundary of the order of $ 0.5 div 1 mu m$ at temperatures grater than the bulk Curie temperature by about $10^2$ K.
80 - J. Carnis , F. Kirner , D. Lapkin 2021
Mesocrystals are nanostructured materials consisting of individual nanocrystals having a preferred crystallographic orientation. On mesoscopic length scales, the properties of mesocrystals are strongly affected by structural heterogeneity. Here, we report the detailed structural characterization of a faceted mesocrystal grain self-assembled from 60 nm sized gold nanocubes. Using coherent X-ray diffraction imaging, we determined the structure of the mesocrystal with the resolution sufficient to resolve each gold nanoparticle. The reconstructed electron density of the gold mesocrystal reveals its intrinsic structural heterogeneity, including local deviations of lattice parameters, and the presence of internal defects. The strain distribution shows that the average superlattice obtained by angular X-ray cross-correlation analysis and the real, multidomain structure of a mesocrystal are very close to each other, with a deviation less than 10 percent. These results will provide an important impact to understanding of the fundamental principles of structuring and self-assembly including ensuing properties of mesocrystals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا